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1 Introduction

Economists have long employed instrumental variables (IV) to identify the causal effect of an en-

dogenous treatment variable on an outcome of interest. For an IV to be valid, it must be an

exogenous variable that only influences the outcome by affecting the treatment choice. However,

this property alone does not ensure the nonparametric identification of treatment effects; addi-

tional assumptions are necessary to identify causal parameters. The general approach to secure

identification is to impose choice restrictions that constraint how agents select the treatments as

the instrument varies.

A seminal assumption for identifying treatment effects in binary choice models is the mono-

tonicity condition of Imbens and Angrist (1994). The condition asserts that a change in the

instrument can only induce agents to alter their choice in the same direction. Vytlacil (2002)

demonstrates that this monotonicity condition is equivalent to assuming a separability condition in

which the treatment choice is modeled by a threshold indicator function comparing the propensity

score with a latent variable responsible for selection bias (Heckman and Vytlacil, 1999, 2005). These

influential ideas spiked a vast literature on both empirical and theoretical aspects of identification

assumptions in IV models with binary choices.1

The IV literature has successfully extended the notions of monotonicity and separability con-

ditions to the case of multiple-choice models. The seminal work of Angrist and Imbens (1995)

extends the previous monotonicity condition of Imbens and Angrist (1994) from the binary choice

to the case of the multiple-choice model. Their condition applies to cases where the treatment

variable has a natural order. Ordered choice models are also examined by Cameron and Heckman

(1998) and further studied by Carneiro et al. (2003); Cunha et al. (2007).

A significant advance in the IV literature is due to Lee and Salanié (2018), who develop general

identification results for multiple choice models characterized by a coherent set of separability

conditions. On the realm of monotonicity conditions, Heckman and Pinto (2018) propose the

unordered monotonicity condition that applies to treatment choices that are not ordered.2 More

recently, Rose and Shem-Tov (2021) proposes a monotonicity condition called extensive margin

compliers only (EMCO), in which a change in the instrument incentives all agents to shift from no

treatment to some treatment status. Mogstad et al. (2021a,b) investigate the monotonicity criteria

in a choice model with multiple instrumental variables.

We propose a departure from the conventional mindset that guides the examination of iden-

tification assumptions in IV models. Instead of concentrating on devising new monotonicity or

1For examples of works in this literature, see Aliprantis (2012); Angrist et al. (2000); Barua and Lang (2016);
Dahl et al. (2017); de Chaisemartin (2017); Heckman (2010); Heckman and Urzúa (2010); Heckman and Vytlacil
(2007a,b); Huber et al. (2017); Huber and Mellace (2012, 2015); Hull (2018); Imbens and Rubin (1997); Klein (2010);
Mogstad et al. (2018); Mogstad and Torgovitsky (2018); Small and Tan (2007).

2Unordered choice models have been studied mainly through the literature on structural equations. A common ap-
proach assumes that additively separable threshold-crossing models generate the equations that govern the treatment.
Examples of this literature are Heckman et al. (2006, 2008); Heckman and Vytlacil (2007a,b).
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separability conditions, we explore how economic incentives and classical economic behavior can be

used to identify causal parameters in IV models featuring multiple choices and categorical instru-

ments. Our method is rooted in a simple yet general framework that employs revealed preference

analysis to transform choice incentives into identification conditions. We demonstrate that distinct

patterns of choice incentives can offer economic justification for the identification assumptions fre-

quently invoked in the IV literature. Furthermore, we demonstrate that the framework is a valuable

tool for generating novel identification strategies that are economically justified.

Our framework offers a distinct advantage: identification relies not on statistical or functional

form assumptions, but instead, identification conditions emerge from the application of fundamen-

tal principles of economic behavior to choice incentives. This feature enhances the credibility and

comprehension of the identification mechanism. The method is flexible enough to accommodate a

wide range of non-trivial identification assumptions. We demonstrate its flexibility by examining

well-known examples of choice incentives in the literature on policy evaluation. The framework is

also capable to provide innovative solutions to non-standard economic scenarios where the identi-

fication assumptions typically invoked by the IV literature do not apply.

We use our framework to investigate the migration of poor Mexican households to the US.

Currently, the US houses approximately 12 million undocumented residents, with almost half origi-

nating from Mexico. Seminal work of Borjas (1987, 1994) suggests a negative selection in migration

patterns, with lower-skilled workers benefiting the most from moving to the US. This perspective is

supported by Angelucci (2015); Lange (2011), who show that schooling incentives led lower-skilled

undocumented migrants to emigrate to the US. She uses data from Oportunidades, Mexico’s flag-

ship anti-poverty program (Gertler, 2004). On the other hand, Behrman et al. (2005); Chiquiar

and Hanson (2005); Hanson (2006) posits a non-monotonic relationship between education and

migration. Fundamental skills such as basic English proficiency taught in middle school increase

the propensity to migrate. However, additional education reduces migration, since it makes the

domestic labor market more attractive than its international counterpart.

We devise a stylized model that uses data from Oportunidades to assess the question of whether

schooling has a non-monotonic effect on the decision to migrate to the US. We use our incentive

framework to identify the causal effects of schooling on migration. We find compelling evidence that

completing middle school increases the likelihood of migration, while advancing schooling beyond

middle school does not. We estimate our model using novel machine learning techniques developed

by Navjeevan, Pinto, and Santos (2023).

This paper adds to the economic literature that uses revealed preference analysis to aid the

identification of causal parameters in policy evaluations. This recent literature has seen the emer-

gence of seminal works such as Kline and Tartari (2016); Kline and Walters (2016b). In recent

years, there has also been a growing interest in applying revealed preference analysis to IV models.

This interest is reflected in the increasing number of studies that have employed revealed preference

analysis to investigate IV models. Examples of works in this literature include Pinto (2022), Feller
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et al. (2016), Kamat (2021), Mountjoy (2021), and Brinch et al. (2017). Our empirical analysis adds

to a significant literature that evaluates the Oportunidades intervention. Our findings corroborate

the hypothesis of a non-monotonic relationship between the migration of poor Mexicans to the US

and their education levels. Finally, this paper adds to a growing number of works that apply novel

machine learning techniques (Chernozhukov et al., 2022; Smucler et al., 2019) to evaluate data.

This paper is organized as following. Section 2 describes our notation and a general criteria

for the identification of causal parameters in IV models. Section 3 presents the revealed preference

framework and shows how it relates to several works in the literature. Section 4 investigates how

patterns of choice incentives yield identification conditions in IV models. Section 5 presents our

empirical application. Section 6 concludes.

2 Setup and Notation

Our IV model consists of three observed variables: a categorical instrument Z that takes NZ values

in Z = {z1, ..., zNZ
}; a multiple treatment choice T that takes NT values in T = {t1, ..., tNT

}; and an

outcome Y ∈ R. Let Y (z, t) be the counterfactual outcome Y when (Z, T ) are fixed to (z, t) ∈ Z×T ,
and Y (t) be the counterfactual outcome when T is fixed to t ∈ T .3 Let Dt = 1[T = t]; t ∈ T and

Dz = 1[Z = z]; z ∈ Z denote binary indicators for treatment choices and IV-values respectively.

The core properties of IV model for all (z, t) ∈ Z × T are:

Exclusion Restriction : Y (z, t) = Y (t). (1)

IV Exogeneity: Z ⊥⊥ (Y (t), T (z)). (2)

IV Relevance: E
(
[Dz1 , ..., DzNZ

]′[Dtl , ..., DtNT
]
)

has full rank. (3)

The exclusion restriction implies that Z affects Y only through T. The exogeneity assumption

means that the instrument Z is as good as randomly assigned, and the IV relevance states that Z

causes T . All variables belong to the probability space (I,F , P ) where i ∈ I denotes an individual.

We suppress baseline variables X for notational simplicity. All analyses can be understood as

conditioned on X.

The response vector S ≡ [T (z1), ..., T (zNZ
)]′ is the unobserved NZ-dimensional vector that

stacks the counterfactual choices T (z) across the IV-values z in Z. Elements s in the support of

the response vector, S = {s1, ..., sNS
}, are called response types or simply types. The response

matrix R ≡ [s1, ..., sNS
] is the NZ × NS matrix that assembles types as columns. To fix ideas,

consider the Local Average Treatment Effects (LATE) model of Imbens and Angrist (1994) with

a binary instrument Z ∈ {z0, z1} and a binary treatment T ∈ {t0, t1}. The response vector S =

[T (z0), T (z1)]
′ admits four possible types: never-takers snt = [t0, t0]

′, compliers sc = [t0, t1]
′, always-

takers sat = [t1, t1]
′, and defiers sd = [t1, t0]

′. Without any additional assumption, its response

matrix given by:

3This notation uses the potential outcome framework of Holland (1986); Rubin (1978). For a discussion on
causality and the fixing operation, see Heckman and Pinto (2013, 2022).
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R =

snt sc sat sd[ ]
t0 t0 t1 t1 T (z0)
t0 t1 t1 t0 T (z1)

(4)

The response vector enables us to connect observed quantities with the unobserved counterfactuals

according to the following equation:4

E(Y |T = t, Z = z)P (T = t|Z = z)︸ ︷︷ ︸
Observed

=
∑
s∈S

1[T = t|S = s, Z = z]︸ ︷︷ ︸
Known

·E(Y (t)|S = s)P (S = s)︸ ︷︷ ︸
Unobserved

∀(z, t) ∈ Z × T .

(5)

The left-hand side of equation (5) comprises of the observed quantities: the conditional expectation

E(Y |T = t, Z = z), and propensity score P (T = t|Z = z).5 The first term of the right-hand side

of the equation is nonrandom since choice T is a fully determined given IV-value z and type s.

The second term on the right-hand comprises two unobserved quantities: the expected value of

counterfactual outcomes conditioned on response types E(Y (t)|S = s), and the type probabilities

P (S = s). It is useful to express equation (5) using the following matrix representation:

QZ(t)⊙ PZ(t) = Bt

(
QS(t)⊙ PS

)
for all t ∈ T , (6)

where QZ(t) ≡ [E(Y |T = t, Z = z1), ..., E(Y |T = t, Z = zNZ
)]′ is the observed vector of outcome

expectations; PZ(t) ≡ [P (T = t|Z = z1), ..., P (T = t|Z = zNZ
)] is the observed vector of propensity

scores; QS(t) ≡ [E(Y (t)|S = s1), ..., E(Y (t)|S = sNS
)], is the unobserved vector of counterfactual

outcomes; PS ≡ [P (S = s1), ..., P (S = sNS
)] is the unobserved vector of type probabilities; and ⊙

denotes element-wise (Hadamard) multiplication. Finally, Bt ≡ 1[R = t] is the NZ × NS binary

matrix that takes value one if the entry in R is t and zero otherwise. Matrices Bt usually have full

row rank since the number of columns NS far exceeds the number of rows NZ . We also use Bt[·, s]
and Bt[z, ·] for the s-column and z-row of Bt respectively. Under this notation, we can state the

following identification criteria:6

Theorem T.1. Let R denotes a response matrix for a choice model in which IV Assumptions (1)–

(3) hold and let S̃ ⊂ S be a subset of response types. For any choice t ∈ T , such that the binary

matrix Bt = 1[R = t] has full row rank, we have that:

E(Y (t)|S ∈ S̃) is identified ⇔ (
∑

s∈S̃ Bt[·,s])
′
(BtB′

t)
−1
(
∑

s∈S̃ Bt[·,s])
|S̃| = 1,

where |S̃| is the number of response types in the set S̃. Moreover, if E(Y (t)|S ∈ S̃) is identified, it
4See Heckman and Pinto (2018) for the derivation of this equation.
5Equation (5) holds for any real-valued function g : R → R and for (z, t) ∈ Z × T , that is:

E(g(Y )|T = t, Z = z)P (T = t|Z = z) =
∑
s∈S

1[T = t|S = s, Z = z] · E(g(Y (t))|S = s)P (S = s).

Setting g(Y ) = 1[Y ≤ y]; y ∈ R generates an equation for the cumulative distribution function of counterfactual
outcomes. Setting g(Y ) = 1 generates an equation that relates propensity scores and response type probabilities.

6The theorem also holds for the outcome transformation g(Y ) for any function g : R → R.
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can be evaluated by:

P (S ∈ S̃) =
(∑

s∈S̃

Bt[·, s]
)′ (

BtB
′
t

)−1
PZ(t),

E(Y (t)|S ∈ S̃)P (S ∈ S̃) =
(∑

s∈S̃

Bt[·, s]
)′ (

BtB
′
t

)−1 (
QZ(t)⊙ PZ(t)

)
.

Proof. See Appendix A.1

The theorem presents a simple criterion for determining whether a counterfactual outcome

Y (t) is identified for a given set of types S̃. In particular, it implies that for any choice t

and any response type s, the conditional expectation E(Y (t)|S = s) is identified if and only if

Bt[·, s]′
(
BtB

′
t

)−1
Bt[·, s] = 1.7 A central message of this criterion is that the identification of the

IV model relies solely on the properties of the response matrix R. In other words, it stems from

the selection of admissible types that constitute the response matrix R. The next section proposes

a framework that uses choice incentives to determine the set of admissible types in IV models.

3 Exploring Choice Incentives

Equation (5) establishes a system of linear equations in which the right-hand side comprises NZ ·NT

observed quantities, while the left-hand side consists of unobserved quantities that depend on

the number of response types NS . This system presents a fundamental identification problem.

Without additional assumptions, the total number of types amounts to NNZ
T , which is significantly

larger than the number of observed quantities NZ · NT . This discrepancy precludes the point-

identification of the unobserved quantities. Consequently, the identification of causal parameters

hinges on assumptions that limit the number of admissible types NS .

A well-known identification assumption in the LATE model of the previous section is the

monotonicity condition of Imbens and Angrist (1994), which states that a change in the instrument

from z0 to z1 induces agents to choose t1. The condition is formalized as:

1[Ti(z0) = t1] ≤ 1[Ti(z1) = t1] ∀i. (7)

The monotonicity condition eliminates the defiers (sd), which secures the identification of the causal

effect for the compliers E(Y (t1)− Y (t0)|S = sc).

Extending the monotonicity condition of Imbens and Angrist (1994) to multiple choice models

poses significant challenges. While the binary treatment model yields a single and intuitive mono-

tonicity condition, the case of multiple choices presents a range of possibilities.8 For instance, the

monotonicity proposed by Angrist and Imbens (1995) and the unordered monotonicity of Heckman

and Pinto (2018) differ significantly in multi-choice settings. However, both approaches collapse

to the same monotonicity condition of Imbens and Angrist (1994) when the treatment is binary.

7Appendix A.2 demonstrates this result by applying the theorem to the LATE model.
8See Lee and Salanié (2018) for examples.
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We argue that examining choice incentives offers a robust framework for investigating, generating,

and justifying monotonicity conditions in multiple choice models. Some notation is required to

translate these choice incentives into identification assumptions.

Let the incentive matrix L be a NZ × NT -dimensional matrix that characterizes the choice

incentives induced by the instrument. Each input L[z, t] denotes the relative incentive of the

IV-value z (row) towards choice t ∈ T (column). The inequality L[z, t] ≤ L[z′, t] means that a

change in the IV from z to z′ increases the incentives towards choice t, making the choice more

attractive. In the case LATE, the IV value z1 incentivizes choice t1, while z0 plays the role of a

baseline comparison that does not incentivize any of the choices. Thus, LATE incentives can be

characterized by the following matrix:

LATE Incentive Matrix L =

t0 t1[ ]
0 0
0 1

z0
z1

(8)

The first row of the matrix takes values zero since z0 offers no incentives while the second row

indicates that z1 incentivizes t1.

The choice rule below translates the choice incentives encoded by an incentive matrix L into

choice restrictions that, in turn, eliminate response types:

Choice Rule: If Ti(z) = t and L[z′, t′]−L[z, t′] ≤ L[z′, t]−L[z, t] then Ti(z
′) ̸= t′. (9)

The choice rule esteems from standard revealed preference analysis.9 It states that if agent i prefers

choice t over t′ under z-incentives (Ti(z) = t), and if z′-incentives favor t at least as much as t′

(L[z′, t′]−L[z, t′] ≤ L[z′, t]−L[z, t]), then the agent will not choose t′ over t under z′ (Ti(z
′) ̸= t′).

This rule highlights a fundamental principle of rational choice theory: an individual’s preferences

towards a choice remain consistent unless there are compelling incentives to choose otherwise. We

demonstrate its application by revisiting key examples from the IV literature.

Example E.1. Our methodology offers an economic justification to the monotonicity condition in

the LATE model. The condition emerges by applying revealed preference analysis captured by the

choice rule (9) to the choice incentives represented by the incentive matrix (8):

Ti(z0) = t1, and L[z1, t0]−L[z0, t0] = 0 ≤ 1 = L[z1, t1]−L[z0, t1] thus Ti(z1) ̸= t0.

In summary, the LATE incentives lead to the choice restriction Ti(z0) = t1 ⇒ Ti(z1) ̸= t0. It states

that if agent i chooses t1 under no incentives (z0), it will not choose t0 when the incentives for t1

are present (z1). This restriction eliminates the defiers and is equivalent to assume the customary

monotonicity condition in (7).

Next example investigates a multiple choice model.

Example E.2. Kline and Walters (2016a) evaluate the Head Start Impact Study using a model

9See Appendix A.3 for a formal derivation of the choice rule using revealed preference arguments.
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with three treatment choices T ∈ {n, c, h} corresponding to three day-care options: h stands for

Head Start, c for other preschool programs, and n for no preschool (home-care). There are two

instrumental values Z ∈ {z0, z1}, with z1 indicating an offer to attend a Head Start school and z0
if no offer is granted. The authors assume that the offer to attend Head Start offer does not induce

children to leave Head Start nor instigate the children to switch between c and n. They express

these assumptions by the following choice restriction:

Ti(z0) ̸= Ti(z1) ⇒ Ti(z1) = h ∀ i ∈ I. (10)

This restriction can also be obtained by applying the choice rule to the model incentives. Specifi-
cally, the incentive matrix of the choice model is:

L =

n c h[ ]
0 0 0 z0
0 0 1 z1

(11)

We can apply the choice rule in four instances:

Ti(z0) = h, and L[z1, c]−L[z0, c] = 0 ≤ 1 = L[z1, h]−L[z0, h] thus Ti(z1) ̸= c,

Ti(z0) = h, and L[z1, n]−L[z0, n] = 0 ≤ 1 = L[z1, h]−L[z0, h] thus Ti(z1) ̸= n,

Ti(z0) = n, and L[z1, c]−L[z0, c] = 0 ≤ 0 = L[z1, n]−L[z0, n] thus Ti(z1) ̸= c,

Ti(z0) = c, and L[z1, n]−L[z0, n] = 0 ≤ 0 = L[z1, c]−L[z0, c] thus Ti(z1) ̸= n.

The first and second choice restrictions are summarized by Ti(z0) = h ⇒ Ti(z1) = h. The third

restriction is Ti(z0) = n⇒ Ti(z1) ̸= c, and the fourth is Ti(z0) = c⇒ Ti(z1) ̸= n. Altogether, these

restrictions are equivalent to the author’s restriction in (10). These restrictions eliminate four of

the nine possible types. The five response types that survive the elimination process are displayed

in the following response matrix:

R =

s1 s2 s3 s4 s5[ ]
n c h n c T (z0)
n c h h h T (z1)

A potential criticism of the revealed preference approach described here lies in its need for

additional analytical tools, which may be deemed superfluous for examining simpler models like

LATE. For these models, resorting solely to the monotonicity condition often presents a more

straightforward approach. However, the advantages of the revealed preference framework become

evident in the context of more intricate models, since the framework often outperforms the analyses

that rely exclusively on monotonicity conditions. The following examples illustrate such cases.

Example E.3. Kirkeboen, Leuven, and Mogstad (2016) investigate a choice model featuring three

treatment options (t0, t1, t2) and three IV-values (z0, z1, z2). In this model, z1 incentivizes choice

t1, z2 incentivizes t2, and z0 provides no incentives. The response vector is denoted by S =

[T (z0), T (z1), T (z2)]
′. There are a total of 27 potential response types since each of the three coun-

terfactual choices (T (z0), T (z1), T (z2)) can take on any of the three treatment values (t0, t1, t2).
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The choice incentives justify two monotonicity conditions:

1[Ti(z0) = t1] ≤ 1[Ti(z1) = t1], and 1[Ti(z0) = t2] ≤ 1[Ti(z2) = t2]. (12)

The first condition states that an IV-change from z0 to z1 induces agents to shift their choice

toward t1 while the second condition states that a change from z0 to z2 induces agents toward t2.

These monotonicity conditions eliminate 12 response types,10 which is not sufficient to ensure the

point-identification of any counterfactual outcome. The revealed preference approach delivers more

identification power. The corresponding incentive matrix and the choice restrictions generated by

the choice rule (9) are displayed below:

L =

t0 t1 t2[ ]
0 0 0 z0
0 1 0 z1
0 0 1 z2

∴

Ti(z0) = t0 ⇒ Ti(z1) ̸= t2 and Ti(z2) ̸= t1
Ti(z0) = t1 ⇒ Ti(z1) = t1 and Ti(z2) ̸= t0
Ti(z0) = t2 ⇒ Ti(z1) ̸= t0 and Ti(z2) = t2
Ti(z1) = t2 ⇒ Ti(z0) = t2 and Ti(z2) = t2
Ti(z2) = t1 ⇒ Ti(z0) = t1 and Ti(z1) = t1

(13)

The incentive matrix L denotes that z1 incentivizes t1 while the last row means that z2

incentivizes t2. Appendix A.4 applies choice rule (9) to each combination of two treatment values

(t, t′) ∈ {t0, t1, t2} and two instrumental values (z, z′) ∈ {z0, z1, z2}2, which results in the five choice

restrictions displayed above. The restrictions are intuitive. The first choice restriction states that

if an agent chooses t0 under z0 (no incentives), then it will not choose t2 under z1, since z1 does not

incentivize t2. The agent will not choose t1 under z2 either since z2 does not incentivize t1 either.

In total, the five choice restrictions eliminate 19 response types, including the 12 types eliminated

by the monotonicity conditions in (12).11 The eight types that survive the elimination process are

displayed in the following response matrix:

R =

s1 s2 s3 s4 s5 s6 s7 s8[ ]t0 t1 t2 t0 t0 t0 t1 t2 T (z0)
t0 t1 t2 t1 t0 t1 t1 t1 T (z1)
t0 t1 t2 t2 t2 t0 t2 t2 T (z2)

(14)

The first three response types, s1, s2, s3, correspond to always-takers. They refer to agents

that choose the same treatment choice (t0, t1, t2 respectively) regardless of the instrumental value.

Type s4 is called a full complier. It refers to agents that are most responsive to the IV incentives.

They choose t0 under no incentives, t1 when assigned to z1, and t2 when assigned to z2. The

remaining four types s5, ..., s8 are called partial compliers since they choose two out of the three

possible treatment statuses.

Example E.4. Pinto (2022) examines the housing experiment called Moving to Opportunity. The

model consists of three neighborhood choices th, tm, tl denoting high-, medium-, and low-poverty

neighborhoods respectively. Families were randomly assigned to one of the three groups: the control

group zc offers no incentives, the Section Eight group z8 received a housing voucher that incentivized

10The first monotonicity condition eliminates the six types given by [t1, t2, t
′] or [t1, t3, t

′] for t′ ∈ {t0, t1, t2}. The
second monotonicity condition eliminates another six types: [t2, t

′, t1] or [t2, t
′, t3] for t

′ ∈ {t0, t1, t2}. See Appendix A.4
for this analysis.

11See Appendix A.4 for the elimination process and additional analyses of this IV model.
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families to choose either medium-poverty (tm) or low-poverty (tl) neighborhoods; the Experimental

group ze received a voucher that incentivized families to live in a low-poverty (tl) neighborhoods; and

the control group zc received no voucher. These incentives justify three monotonicity conditions:

1[Ti(zc) = tl] ≤ 1[Ti(ze) = tl], 1[Ti(zc) ∈ {tm, tl}] ≤ 1[Ti(z8) ∈ {tm, tl}], and 1[Ti(ze) = tm] ≤ 1[Ti(z8) = tm].

The first conditions states that an IV change from zc to ze promotes th since zc offers no incentives

and ze incentivizes only tl. The second means that a change from zc to z8 incite choices tm or

th, since z8 incentivizes both tm and l. The last condition means that a change from ze to z8

instigate choice tm since both ze, z8 incentivize tl but only z8 incentivizes tm. These conditions

eliminate 14 out of the 27 response types which do not secure the point-identification of response

type probabilities or counterfactual outcomes. The revealed preference analysis is more effective

at eliminating response types. The incentive matrix and the corresponding choice restrictions are

displayed below:

L =

th tm tl[ ]0 0 0 zc
0 1 1 z8
0 0 1 ze

∴

Ti(zc) = tl ⇒ Ti(ze) = tl and Ti(z8) ̸= th
Ti(zc) = tm ⇒ Ti(ze) ̸= th and Ti(z8) ̸= th
Ti(ze) = tm ⇒ Ti(zc) = tm and Ti(z8) = tm
Ti(ze) = th ⇒ Ti(zc) = th and Ti(z8) ̸= tl
Ti(z8) = th ⇒ Ti(zc) = th and Ti(ze) = th
Ti(z8) = tl ⇒ Ti(ze) = tl
Ti(zc) ̸= th ⇒ Ti(z8) = Ti(zc)

(15)

These restrictions eliminate 20 out of the 27 possible response types including those eliminated

by the monotonicity conditions. The seven types that survive the elimination process are displayed

in the following response matrix:

R =

s1 s2 s3 s4 s5 s6 s7[ ]
th tm tl th th tm th T (zc)
th tm tl tm tl tm tm T (z8)
th tm tl tl tl tl th T (ze)

(16)

These response types enable the point-identification of all response type probabilities and most

of the counterfactual outcomes.

Example E.5. Mountjoy (2022) studies the returns to two- and four-year college degrees. He uses

proximity to college as an IV to encourage college enrollment. Let T ∈ {0, 2, 4} represent the number

of years of the college degree. The discrete version of the instrument is Z = (Z2, Z4) ∈ {0, 1}2,
where Z2 and Z4 indicate the proximity to two-year and four-year colleges, respectively. We use

T (z2, z4) for the counterfactual choice. The response vector S = [T (0, 0), T (0, 1), T (1, 0), T (1, 1)]′

can take on the values of 81 potential response types. Proximity serves as an incentive for college

enrollment, thereby justifying six natural monotonicity conditions:

1[Ti(1, z4) = 0] ≤ 1[Ti(0, z4) = 0], 1[Ti(z2, 1) = 0] ≤ 1[Ti(z2, 0) = 0],

1[Ti(1, z4) = 2] ≥ 1[Ti(0, z4) = 2], 1[Ti(z2, 1) = 2] ≤ 1[Ti(z2, 0) = 2],

1[Ti(1, z4) = 4] ≥ 1[Ti(0, z4) = 4], 1[Ti(z2, 1) = 4] ≥ 1[Ti(z2, 0) = 4].
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These monotonicity conditions state that an increase in the proximity to a two-year college induces

agents towards choice 2 and away from choices 0 and 4. Conversely, an increase in the proximity

to a four-year college induces agents towards choice 4 and away from choices 0 and 2. These

monotonicity conditions eliminate 70 out of the 81 possible response types. The revealed preference

analysis is capable of eliminating additional types. The incentive matrix of this choice model and

its corresponding choice restrictions generated by the choice rule (9) are as follows:

L =

0 2 4 (z2, z4)


0 0 0 (0, 0)
0 1 1 (0, 1)
0 0 1 (1, 0)
0 1 1 (1, 1)

∴

Ti(1, 1) = 0 ⇒ Ti(0, 0) = 0, Ti(0, 1) = 0, Ti(1, 0) = 0
Ti(0, 1) = 0 ⇒ Ti(0, 0) = 0
Ti(1, 0) = 0 ⇒ Ti(0, 0) = 0
Ti(0, 1) = 2 ⇒ Ti(1, 1) = 2, Ti(1, 0) = 2, Ti(0, 0) = 2
Ti(0, 0) = 2 ⇒ Ti(1, 0) = 2, Ti(1, 1) = 2
Ti(1, 1) = 2 ⇒ Ti(1, 0) = 2
Ti(1, 0) = 4 ⇒ Ti(1, 1) = 4, Ti(0, 0) = 4, Ti(0, 1) = 4
Ti(0, 0) = 4 ⇒ Ti(0, 1) = 4, Ti(1, 1) = 4
Ti(1, 1) = 4 ⇒ Ti(0, 1) = 4

(17)

The incentive matrix generates nine choice restrictions that eliminate 72 response types, in-

cluding those eliminated by the monotonicity conditions. The response matrix containing the nine

types that survive this elimination process is displayed below:

R =

s1 s2 s3 s4 s5 s6 s7 s8 s9


0 0 0 0 0 2 2 4 4 T (0, 0)
0 0 4 4 4 2 4 4 4 T (0, 1)
0 2 0 2 2 2 2 2 4 T (1, 0)
0 2 4 2 4 2 2 4 4 T (1, 1)

Generality and Limitations

The framework presented here broadly applies to IV models that can be characterized by an

incentive matrix. This scope encompasses instruments that span a wide range of incentives, which

serve to augment the attractiveness, accessibility, or affordability of the treatment choices. Exam-

ples of such instruments include, but are not limited to, monetary rewards, advertising campaigns,

tax reductions, subsidies, pricing mechanisms, and geographical proximity.

The incentive matrix exhibits several desirable properties: (1) The matrix allows an IV value

to incentivize more than one treatment choice; (2) The generated choice restrictions are invariant

to row and column permutations; (3) The restrictions are also invariant to any strictly monotonic

transformations of the matrix; and (4) The restrictions are symmetric among choices that display

the same incentives across IV-values.12

A key requirement of the incentive matrix is that treatment incentives must be comparable.

For instance, the incentive matrix is not suitable to represent the choice incentives of a schooling

experiment that seeks to boost academic performance by offering students monetary prizes or

12Identical rows of an incentive matrix mean that the corresponding IV-values are distinguishable in terms of choice
incentives. In this case, it is advisable to merge these IV-values into a single representative value.
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academic awards. These incentives are not easily ranked since some students may favor academic

awards, while others gravitate towards monetary benefits.

4 What Incentives Justify Monotonicity Conditions?

Our framework provides a methodology for converting choice incentives into choice constraints. A

natural application of this framework is to investigate which patterns of choice incentives justify

monotonicity conditions typically invoked in the IV literature. Specifically, we study the economic

content of Angrist and Imbens (1995) well-known monotonicity condition, the unordered mono-

tonicity of Heckman and Pinto (2018), and the extensive margin compliers only (EMCO) discussed

in Andresen and Huber (2021); Angrist and Imbens (1995); Rose and Shem-Tov (2021). We also

study which incentive properties validate monotonicity conditions applicable to a single treatment

choice in multiple-choice models.

All the theorems apply to the IV model described by Assumptions (1)–(3) whose choice in-

centives are given by an incentive matrix L that satisfies Choice Rule (9).

4.1 Investigating Ordered Monotonicity

Angrist and Imbens (1995) states that a change in the instrument induces all agents towards the

same treatment direction:

Ti(z) ≤ Ti(z
′) ∀ i, or Ti(z) ≥ Ti(z

′) ∀ i and any z, z′ ∈ Z. (18)

A celebrated result of Angrist and Imbens (1995) is that their monotonicity condition grants a

causal interpretation to the standard Two-Stage Least Squares (2SLS) estimator. Vytlacil (2006)

shows that this monotonicity condition is equivalent to assuming an ordered choice model with

random thresholds. Thus, this monotonicity condition is commonly perceived as an intrinsic prop-

erty of treatment choices that exhibit a natural order, such as years of schooling. This assessment

is misleading. The primary feature of the condition is not the ordered nature of treatment choices.

Instead, it is about a relationship between a sequence of IV-values whereby higher rankings of the

z-values are associated with higher rankings of the counterfactual choices Ti(z). To clarify, it is

helpful to express this condition in terms of sequences of IV-values and treatment choices:

Ordered Monotonicity Condition (OMC): There exists an ordered sequence of treatment

status t1 < · · · < tNT
in T and a sequence of IV-values z1, . . . , zNZ

in Z such that Ti(z1) ≤ · · · ≤
Ti(zNZ

) holds for each i ∈ I.

OMC is a slightly more inclusive version of the Angrist and Imbens (1995) condition. The

monotonicity holds whenever it is possible to assign values to treatment choice T such that a

sequence of IV-values produces an increasing sequence of counterfactual choices across all types.

In the binary choice model, OMC is equivalent to the monotonicity condition of LATE. To gain

intuition, consider the case where T ∈ {1, 2, 3}, Z ∈ {z1, z2, z3} and Ordered Monotonicity Ti(z1) ≤
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Ti(z2) ≤ Ti(z3) holds. The response matrix that contains all the admissible response types of model

is:

R =

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10[ ]
1 1 1 1 1 1 2 2 2 3 T (z1)
1 1 1 2 2 3 2 2 3 3 T (z2)
1 2 3 2 3 3 2 3 3 3 T (z3)

(19)

The matrix adheres to the OMC because choices weakly increase across successive rows. The

response matrix contains ten types. In the general case of NT choices and NZ IV-values, the OMC

yields a total of
(
NT+NZ−1

NT−1

)
admissible response types. A choice model is said to be saturated w.r.t.

OMC if it contains every type that adheres to the condition. Otherwise stated, it is not possible to

add another type without violating the condition. Conversely, a model is considered unsaturated

w.r.t. OMC if yields only a subset of the possible types that adhere to the condition. This is the

case of example E.3. Note that if we order the IV-values to (z1, z0, z2) and assign the choice values

t1 = 1, t0 = 2, t2 = 3, we obtain the following response matrix representation:

L =

1 2 3[ ]1 0 0 z1
0 0 0 z0
0 0 1 z2

, R =

s2 s1 s3 s4 s5 s6 s7 s8[ ]1 2 3 1 2 1 1 1 T (z1)
1 2 3 2 2 2 1 3 T (z0)
1 2 3 3 3 2 3 3 T (z2)

(20)

The treatment values of each type are non-decreasing as we move from one row to another. This

pattern implies that Ti(z1) ≤ Ti(z0) ≤ Ti(z2) holds for all i ∈ I and therefore OMC is satisfied.

The choice model is unsaturated w.r.t. OMC because it does not contain all the ten possible types.

This means that the choice restrictions generated by the incentive matrix subsume and are more

restrictive than the OMC.

We now examine the pattern of choice incentives that justifies the OMC. Incentives are termed

supermodular if there exists a sequence of IV-values z1, ..., zNZ
and a sequence of treatment choices

t1, ...tNT
such that, for any j = 1, ..., NZ − 1, and k = 1, ..., NZ − 1, we have that:

Supermodular Incentives: L[zk+1, tj ]−L[zk, tj ] ≤ L[zk+1, tj+1]−L[zk, tj+1]. (21)

Choice incentives are supermodular if the difference in incentives across IV-values weakly increases

through the sequence of treatment choices. This pattern includes choice incentives that progres-

sively escalate with higher ranks of IV-values and treatment statuses. Furthermore, we term an

incentive matrix L strictly supermodular if the inequality in (21) is strictly enforced. We are now

equipped to state the following result:

Theorem T.2. OMC holds if and only if incentives are supermodular. Moreover, a model with

strictly supermodular incentives generates a saturated response matrix w.r.t. OMC.

Proof. See Appendix A.6.
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Theorem T.2 states that supermodular incentives ensure the OMC. For notational conve-

nience, let ∆L be the row-difference of an incentive matrix L :

∆L[k, j] = (L[zk+1, tj ]−L[zk, tj ]); k = 1, .., NZ − 1; j = 1, ..., NT .

Incentives are supermodular if ∆L is weakly increasing in both row and column dimensions. In

addition, the incentives are strictly supermodular the columns of ∆L are strictly increasing, namely,

∆L[·, j] < ∆L[·, j+1]. Examples of supermodular incentives for T ∈ {1, 2, 3} and Z =∈ {z1, z2, z3}
are:

L =

1 2 3[ ]
1 1 1 z1
1 2 4 z2
1 3 9 z3

⇒ ∆L =

[ ]
0 1 3
0 1 5

(22)

L =

1 2 3[ ]1 0 0 z1
1/2 0 1/2 z2
0 0 1 z3

⇒ ∆L =

[ ]
−1/2 0 1/2
−1/2 0 1/2

(23)

L =

1 2 3[ ]1 0 0 z1
0 0 0 z2
0 0 1 z3

⇒ ∆L =

[ ]
−1 0 0
0 0 1

(24)

The first example (22) presents a Vandermonde matrix which exhibits increasing choice incentives

in both row and the column dimensions. The matrix satisfies strictly supermodularity since the

columns of ∆L are strictly increasing. According to T.2, these incentives yield the saturated

response matrix displayed in (19).

The second example (23) displays a choice pattern in which z1 offers full incentives for choice

1; z3 offers full incentives for choice 3; while z2 splits the incentives between choices 1 and 3. Strictly

supermodularity also holds since the columns of ∆L are strictly increasing. Again, T.2 ensures

that these incentives also yield the saturated response matrix in (19).

The final incentive matrix (24) revisits the example in equation (20). This matrix exhibits

supermodularity since the columns in ∆L are weakly increasing. However, it does not fulfill the

criteria for strict supermodularity because the columns of ∆L are not strictly increasing. These

incentives generate the unsaturated response matrix in (20), which satisfies OMC but has fewer

types than the saturated version. It is worth noting that having fewer types confers additional

identification power. It means that the incentive matrix yields choice restrictions that subsume

and outperform the OMC.

4.2 Investigating Unordered Monotonicity

Heckman and Pinto (2018) propose an Unordered Monotonicity Condition that applies to treatment
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choices that are not ordered. The condition states that for each pair of IV-values (z, z′) ∈ Z2 and

for each t ∈ T ,

1[Ti(z) = t] ≤ 1[Ti(z
′) = t] ∀ i or 1[Ti(z) = t] ≥ 1[Ti(z

′) = t] ∀ i. (25)

The condition means that for each of the choices t, an IV-change must induce induces all agents

towards t or all agents away from t. Heckman and Pinto (2018) show that the condition naturally

arises in a range of IV settings in which treatment choices do not have a clear ordering structure.

They also show that unordered monotonicity enables us to express the indicator for choice t as a

latent threshold indicator akin to the result in Vytlacil (2002). Specifically, 1[T (z) = t] = 1[Pt(z) ≥
Ut], where Pt(z) = P (T = t|Z = z) is the propensity score and Ut ∼ Unif [0, 1] is an unobserved

random variable with uniform distribution in [0, 1] that is statistically independent of Z.13 Pinto

(2022) explores this choice representation to evaluate the Moving to Opportunity Intervention as

described in example E.4. Finally, the monotonicity condition can be equivalently stated in terms

of IV-sequences:

Unordered Monotonicity Condition (UMC): For each choice t, there exists a sequence of

IV-values (z
(t)
1 , ..., z

(t)
NZ

) in Z such that 1[Ti(z
(t)
1 ) = t] ≤ ... ≤ 1[Ti(z

(t)
NZ

) = t].

UMC posits that for each treatment choice t there is a sequence of the IV-values that in-

duce agents to choose t. These IV sequences can and do differ across choices t ∈ T . In contrast,

OMC employs a single sequence of IV values that induces all agents to choose higher treatment

values.14 In practical terms, UMC means that it is possible to reorder the rows and columns of the

response matrix to generate a lower triangular matrix with respect to each choice t. We revisit the

example E.4 to illustrate this property:

R =

s1 s2 s3 s4 s5 s6 s7[ ]
th tm tl th th tm th T (zc)
th tm tl tm tl tm tm T (z8)
th tm tl tl tl tl th T (ze)

, Rh =

s1 s7 s4 s5 s2 s3 s6 th tm tm tl tm tl tm T (z8)

th th tl tl tm tl tl T (ze)

th th th th tm tl tm T (zc)

,

(26)

Rm =

s2 s6 s4 s7 s1 s3 s5 tm tl tl th th tl tl T (ze)

tm tm th th th tl th T (zc)

tm tm tm tm th tl tl T (z8)

, Rl =

s3 s5 s4 s6 s1 s2 s7 tl th th tm th tm th T (zc)

tl tl tm tm th tm tm T (z8)

tl tl tl tl th tm th T (ze)

.

(27)

The matrix R is the original response matrix of example E.4. Matrix Rh rearranges the columns

and rows of the original matrix to generate a lower triangular matrix w.r.t. th. This ordering reveals

13Heckman and Pinto (2018) assume a general model where choice T = f(Z,V ) is a function of the instrument Z
and an absolutely continuous unobserved random vector V that is statistically independent of Z.

14UMC does not imply or is implied by OMC in multiple choice models, but they do collapse to the monotonicity
condition of Imbens and Angrist (1994) in the case of a binary choice.
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that the number of types taking value th increase as we move along the IV-sequence z8, ze, zc.
15

This means that the IV-sequence z8, ze, zc induce agents to choose th and the following inequality

holds:

1[Ti(ze) = th] ≤ 1[Ti(z8) = th] ≤ 1[Ti(zc) = th] ∀ i ∈ I.
Matrices Rm and Rl show that it is also possible to generate lower triangular matrices w.r.t. tm

and tl via row and column permutations. Consequently, UMC is satisfied. In contrast, OMC

does not hold because it is not possible to assign values to treatment choices th, tm, tl that ensure

increasing sequences of counterfactuals Ti(zc) ≤ Ti(z8) ≤ Ti(ze) across all types.16 Finally, the

response matrix is said to be saturated w.r.t. the UMC because it is not possible to add another

response type without violating UMC.

A binary matrix that can be transformed into lower triangular matrix via row and column

permutations are called lonesum (Ryser, 1957). Thus we can state that UMC holds of and only

if when all the binary matrices Bt ≡ 1[R = t]; t ∈ T are lonesum. A simple criterion to verify if

a response matrix satisfies the UMC is to check if the matrix does not contain a 2 × 2 submatrix

in which the diagonal contains a choice t and the off-diagonal does not.17 This prohibit pattern

prevents us to transform the response matrix into a lower triangular matrix of t-values as illustrated

in equations (26)–(27). For example, response matrix (20) satisfies OMC but it does not satisfy

UMC since 2× 2 submatrix formed by columns s5, s6, and rows z1, z3, has choice 2 in its diagonal

but lacks choice 2 in its off-diagonal.

We introduce the concept of Monotonic incentives, which is pivotal in analyzing the economic

incentives underlying the UMC in binary incentive matrices.

Monotonic Incentives: for any z, z′ ∈ Z, L[z′, t] ≤ L[z, t]∀ t ∈ T or L[z′, t] ≥ L[z, t]∀ t ∈ T . (28)

Monotonic incentives imply the existence of an IV-sequence in which the incentives in L weakly

increase for all choices. In the case of 3× 3 binary matrices, there are four non-equivalent matrices

that display monotonic incentives:

L =

1 2 3[ ]0 0 0 z1
0 0 1 z2
0 1 1 z3

, L =

1 2 3[ ]0 0 0 z1
0 0 1 z2
1 1 1 z3

, L =

1 2 3[ ]
0 0 0 z1
0 1 1 z2
1 1 1 z3

, L =

1 2 3[ ]
0 0 1 z1
0 1 1 z2
1 1 1 z3

.

These matrices satisfy the monotonic incentive criteria because L[z1, t] ≤ L[z2, t] ≤ L[z3, t]

holds for all t ∈ {t1, t2, t3}. They are lonesum since they are binary and triangular. Indeed, if L

is binary, the concept of monotonic incentives is equivalent to L being lonesum. In particular, the

first incentive matrix above is equivalent to the one in the example E.4.18 Next theorem explains

15Under z8, only s1 takes the value th. Under ze, the types s1 and s7 take the value th, and under zc, the types
that take the value th are s1, s7, s4, s5.

16For instance, selecting choice values such that th < tm < tl results in an increasing sequence of treatment values
for response type s4 = [th, tm, tl]

′, but it fails to generate an increasing sequence for the type s7 = [th, tm, th]
′.

17See Heckman and Pinto (2018) for a discussion on these properties.
18Two matrices are said to be equivalent if they have the same dimension and one can be transformed into the

other via row and column permutations.
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that monotonic incentives imply UMC:

Theorem T.3. UMC holds for all binary incentive matrices L satisfying monotonic incentives.

Proof. See Appendix A.7.

An alternative way to express the Theorem T.3 is:

Corollary C.1. L is lonesum ⇒ Bt is lonesum for all t ∈ T .

The corollary states that if the Incentive matrix L is lonesum,then it can be transformed into

a lower triangular matrix via row and column permutations. This means that monotonic incentives

hold. Applying the choice rule to the incentive matrix generates choice restrictions that yield a

response matrix R that satisfy UMC, and thereby, the binary matrices Bt ≡ 1[R = t] are lonesum,

which means that these matrices can be transformed into lower triangular matrices via row and

column permutations.

The criterion of monotonic incentives (28) is instrumental in ensuring that UMC holds. How-

ever, this criterion does not encompass all types of incentives capable of inducing UMC. To establish

a more general criterion, it is necessary to study the incentive patterns that induce monotonicity

for a single choice t, namely:

1[Ti(z) = t] ≤ 1[Ti(z
′) = t] ∀ i or 1[Ti(z) = t] ≥ 1[Ti(z

′) = t] ∀ i ∈ I and any z, z′ ∈ Z. (29)

The monotonicity condition above describes an indicator inequality in which a change in the in-

strument induce all agents towards choice t or away from choice t. The condition focuses on a single

choice t. UMC arises when this condition holds for all t ∈ T . The t-monotonic incentives, described

below, is central in generating the monotonicity condition of the choice indicator (29):

t-Monotonic Incentives: L is t-monotonic if, for any two IV-values z, z′ ∈ Z, we have that:

L[z′, t]−L[z, t] ≤ L[z′, t′]−L[z, t′] ∀ t′ ∈ T or L[z′, t]−L[z, t] ≥ L[z′, t′]−L[z, t′] ∀ t′ ∈ T . (30)

Incentives are termed t-monotonic if for any instrumental change the incentive difference for

the choice t is either the maximum or the minimum incentive difference among all treatment choices.

The next theorem describes the relevant properties of t-monotonic incentives:

Theorem T.4. Monotonicity condition (29) holds for choice t if and only if L is t-monotonic.

Proof. See Appendix A.8.

The theorem states that t-monotonic incentives is a necessary and sufficient condition for the

indicator monotonicity condition (29) to hold. A natural consequence of the theorem is:

Corollary C.2. UMC holds if and only if L is t-monotonic for all t ∈ T .

The corollary directly stems from Theorem T.4 and the definition of UMC, which asserts that

the indicator monotonicity condition (29) applies to all choices t ∈ T . Essentially, the corollary
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states that given an IV-change, UMC holds only if the incentive differences for each of the choice

t ∈ T is either the maximum or the minimum of the differences across all choices. This implies

that the incentive differences should exhibit at most two distinct values throughout all treatment

values. The following examples help clarify this property:

L =

th tm tl[ ]0 0 0 zc
0 1 1 z8
0 0 1 ze

∴

th tm tl
L[z8, t]−L[zc, t] 0 1 1
L[ze, t]−L[zc, t] 0 1 0
L[z8, t]−L[ze, t] 0 0 1

(31)

L =

t1 t2 t3[ ]
0 0 0 z1
1 0 0 z2
0 1 1 z3

∴

t1 t2 t3
L[z2, t]−L[z1, t] 1 0 0
L[z3, t]−L[z1, t] 0 1 1
L[z3, t]−L[z2, t] -1 1 1

(32)

L =

t1 t2 t3[ ]
0 0 1 z1
0 1 2 z2
1 2 3 z3

∴

t1 t2 t3
L[z2, t]−L[z1, t] 0 1 1
L[z3, t]−L[z1, t] 1 2 2
L[z3, t]−L[z2, t] 1 1 1

(33)

L =

1 2 3[ ]
1 0 0 z1
0 0 0 z0
0 0 1 z2

∴

1 2 3
L[z0, t]−L[z1, t] -1 0 0
L[z2, t]−L[z1, t] -1 0 1
L[z2, t]−L[z0, t] 0 0 -1

(34)

Equation (31) investigates the incentive matrix of example E.4. The second matrix dis-

plays the incentive differences corresponding to IV-changes (rows) across the treatment statuses

(columns). These incentive differences take only two values, zero or one. Thus, for each IV-

comparison, the incentive difference of any treatment status is either the maximum or the minimum

among the possible values. This property imply that the incentive matrix is t-monotonic for each

treatment choice and, according to C.2, UMC holds. This result was previously assessed by noting

that the matrix is a case of monotonic incentives (28).

Equation (32) presents a binary incentive matrix that does not exhibit monotonic incentives

since the IV-change from z2 to z3 decreases the incentive for choosing t1 while increases the incentive

for choosing t2. However the incentive differences for each IV-change (row) take only two values

across all treatment statuses. Thus, for every IV-comparison, the incentive difference of each

treatment choice takes either the maximum or the minimum. Consequently, UMC also holds.

Equation (33) presents an incentive matrix that is not binary. The incentive differences associated

for each IV-change also take at most two values across the treatment choices, which imply UMC

as well. See The corresponding response matrices and a more detailed analysis of these models can

be found in Appendix A.9.

Equation(34) reexamines the incentive matrix in (20), where OMC holds. The incentive

difference L[z2, t] − L[z1, t] takes three values across t ∈ {1, 2, 3}. Thus, according to C.2, UMC

18



does not hold. This fact is corroborated by examining the response matrix in (20). The matrix

displays a prohibit pattern in the 2 × 2 submatrix composed of types s5, s6 and rows z1, z2. The

submatrix contains the value two in its the diagonal, but does not contain two in its off-diagonal.

We can further explore the properties of t-monotonic incentives. A simple method to check

for t-monotonicity in binary incentive matrices is to split the incentive matrix L into L0
t and L1

t

such that L0
t contains the z-rows L[z, ·] such that L[z, t] = 0 and L1

t contains the z-rows such that

L[z, t] = 1. Under this notation, we can present the following result:

Corollary C.3. For any binary incentive matrix L, incentives are t-monotonic for a choice t ∈ T
if and only if matrices L1

t and L0
t are lonesum.

Proof. See Appendix A.10.

The corollary states that a necessary and sufficient condition for t-monotonicity to hold in a

binary incentive matrix L is that matrices L1
t and L0

t are lonesum matrices. We use the incentive

matrix of example E.5 to illustrate an application of the corollary:

L =

0 2 4 (z2, z4)


0 0 0 (0, 0)

0 0 1 (0, 1)

0 1 0 (1, 0)
0 1 1 (1, 1)

∴

L0
2 =

0 2 4 (z2, z4)[ ]
0 0 0 ( 0 , 0 )
0 0 1 ( 0 , 1 )

L1
2 =

0 2 4 (z2, z4)[ ]
0 1 0 ( 1 , 0 )
0 1 1 ( 1 , 1 )

,

L0
4 =

0 2 4 (z2, z4)[ ]
0 0 0 ( 0 , 0 )
0 1 0 ( 1 , 0 )

L1
4 =

0 2 4 (z2, z4)[ ]
0 0 1 ( 0 , 1 )
0 1 1 ( 1 , 1 )

.

The first matrix displays the incentive matrix L of example E.5. Matrices L0
2 and L1

2 split

L according to the incentives of choice 2. These matrices do not contain the prohibit pattern (the

2×2 identity matrix). Thus, according to C.3, the incentive matrix L is 2-monotonic. Matrices L0
4

and L1
4 refer to choice 4. These matrices do not present the prohibited pattern either. Therefore,

L is also 4-monotonic. Incentives for choice 0, first column of L, are all zero. Thus L0
0 = L, and

the matrix displays the prohibit pattern in the columns associated with choices 2 and 4, and rows

(0, 1) and (1, 0). Therefore L is not 0-monotonic and UMC does not hold.

Although UMC does not hold, the incentive matrix is t-monotonic with respect to choices 2

and 4. Consequently, the monotonicity condition (30) holds for these two choices. This means that

there must exist two IV-sequences capable of induce agents each of each of these choices. Indeed,

we can reorder the rows and columns of the response matrix to review a progressive and monotonic

pattern of choice selection:
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R2 =

s6 s7 s2 s4 s5 s8 s1 s3 s9


2 4 0 4 4 4 0 4 4 T (0, 1)

2 2 0 0 0 4 0 0 4 T (0, 0)

2 2 2 2 4 4 0 4 4 T (1, 1)

2 2 2 2 2 2 0 0 4 T (1, 0)

R4 =

s9 s8 s3 s5 s4 s7 s1 s2 s6


4 2 0 2 2 2 0 2 2 T (0, 1)

4 4 0 0 0 2 0 0 2 T (0, 0)

4 4 4 4 2 2 0 2 2 T (1, 1)

4 4 4 4 4 4 0 0 2 T (0, 1)

The equations above show that the response matrix can be reordered into a lower triangular

matrix with respect to choices 2 and 4. This corroborates the result that the monotonicity condi-

tion (30) holds for choices 2 and 4. The same feature does not apply to choice 0 since the 2 × 2

submatrix of response types s2 and s3 and rows T (0, 1) and T (1, 0) displays the prohibit pattern.

As expected, UMC does not hold. OMC does not hold either since no IV-sequence yields a weakly

increasing sequence of treatment choices across all types. Finally, the t-monotonicity conditions

enables us to express the choice model by the following structural equations:

T =


0 if P2(Z) < U2 and P4(Z) < U4,

2 if P2(Z) ≥ U2,

4 if P4(Z) ≥ U4,

where Pt(Z) ≡ P (T = t|Z), Ut ∼ Unif [0, 1], and Z ⊥⊥ Ut for t ∈ {2, 4}. This structural representa-
tion arises from the t-monotonicity of choices 2 and 4, and the fact that choice 0 is the complement

of choices 2 and 4. This representation allows us to express the counterfactual outcomes Y (2), Y (4)

as functions of propensity scores P2(Z) and P4(Z) respectively, while Y (0) is a function of both

propensity scores. Additional identification power emerges when assuming functional forms for

these counterfactuals or exploring baseline variables to generate variation in propensity scores. In

the case of continuous instruments, this structural representation can be used to identify average

treatment effects using the framework proposed by Lee and Salanié (2018).

It is helpful to summarize our analytical progress thus far. We have shown that the incentive

matrix of example E.3 generate a choice model satisfying only OMC. The choice incentives of

example E.4 generates a model adhering solely to UMC. Furthermore, the incentives of example E.5

result in a choice model wherein either UMC or OMC is applicable. Next section explores incentives

that lead to choice models where both UMC and OMC hold.

4.3 Incentives that Justify Recoding Treatment into an Exposure Indicator

The empirical analysis of IV models frequently involves the conversion of a multi-valued treatment

into a binary variable that indicates exposure to a treatment. A typical example is to recode years
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of schooling into a dummy variable for college or high school graduation.19 Angrist and Imbens

(1995) argue that recoding the treatment status is problematic since the common 2SLS estimand

recovers a weighted average of effects that usually do not have the intended causal interpretation.

This problem has been recently studied by Andresen and Huber (2021) and Rose and Shem-Tov

(2023). A simple example clarifies this issue.

Consider the IV model where T ∈ {0, 2, 4} denotes years of college education. Let Z ∈ {z0, z1},
be an instrument where z1 offers increasing incentives to greater years of college education while

z0 is a baseline comparison that offers no choice incentives:

L =

0 2 4[ ]
0 0 0 z0
0 1 2 z1

∴ R =

s1 s2 s3 s4 s5 s6[ ]
0 2 4 0 0 2 T (z0)
0 2 4 2 4 4 T (z1)

The incentive matrix above satisfies strict supermodularity, which yields a saturated response

matrix with respect to OMC. The corresponding response matrix has six types s1–s6 ensuring

that Ti(z0) ≤ Ti(z1) holds for all i ∈ I. Types s1–s3 are always-takers, while s4–s6 are compliers.

Suppose a research intends to evaluate the causal effect of four-year college graduation and thus

recodes the treatment T into the binary variable D = 1[T = 4] that indicates if the agent has

completed a four-year college education. The Wald estimand of the 2SLS regression recovers the

following causal response:

E(Y |Z = z1)− E(Y |Z = z0)

E(D|Z = z1)− E(D|Z = z0)
=
E(Y (4)− Y (0)|s5)P (s5) + E(Y (4)− Y (2)|s6)P (s6)

P (S ∈ {s5, s6})︸ ︷︷ ︸
Intended Effect (extra-margin)

+
E(Y (2)− Y (0)|s4)P (s4)

P (S ∈ {s5, s6})︸ ︷︷ ︸
Unintended Effect (intra-margin)

This estimand presents two problems. First, it conflates an intended effect with an unintended

one. The intended effect is the weighted average of the causal effect of four-year college graduation

against no college, E(Y (4)−Y (0)|s5), and two-year college, E(Y (4)−Y (2)|s6). These effects refer

to types s5 and s6 which display extra-margin variation: T shifts from 0 or 2 to 4 when D changes

from zero to one. On the other hand, he unintended effect evaluates the causal effect of two-

year college versus no college, E(Y (2) − Y (0)|s4). This effect refers to type s4 which displays an

intra-margin variation: T changes from 0 to 2 while D remains constant. The second problem,

highlighted by Andresen and Huber (2021), is that the binary treatment violates the IV exclusion

restriction since the IV affects the counterfactual outcomes through channels beyond D. A solution

to both problems is to prevent intra-margin treatment variation by eliminating type s4.

Rose and Shem-Tov (2021) coined the term Extensive Margin Compliers Only (EMCO) for a

monotonicity condition that prevents intra-margin treatment variation in IV models with a binary

instrument. We present a revised condition that extends their approach to the case of a categorical

19Numerous empirical studies undertake a binary conversion of a multi-valued treatment, including Aizer and Doyle
(2015); Arteaga (2021); Bhuller et al. (2020); Black et al. (2005); Carneiro et al. (2011); Finkelstein et al. (2012);
Kane and Rouse (1995); Mogstad and Wiswall (2016).
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instrument. For a given treatment status t ∈ T and any for any z, z′ ∈ supp(Z) we have that:

t-EMCO: 1[Ti(z) = t] ≤ 1[Ti(z
′) = t]∀ i or 1[Ti(z) = t] ≥ 1[Ti(z

′) = t]∀ i (35)

and Ti(z) ̸= Ti(z
′) ⇒ Ti(z) = t or Ti(z

′) = t. (36)

The t-EMCO condition refers to a single treatment status t and combines two requirements: the

monotonicity condition of the choice indicator (35), and a no intra-margin condition (36), which

ensures that any choice shift within each complier must be confined between t and one other choice.

The following response matrix displays the response types for T ∈ {0, 2, 4} and Z ∈ {z1, z2, z3},
when 4-EMCO holds:

R =

s1 s2 s3 s4 s5 s6 s7 0 2 4 0 2 0 2 T (z1)

0 2 4 4 4 0 2 T (z2)

0 2 4 4 4 4 4 T (z3)

(37)

Response types s1 − s3 are always-takes. The remaining types s6 − s7 are the compliers. The

monotonicity of the choice indicator holds since 1[Ti(z1) = 4] ≤ 1[Ti(z2) = 4] ≤ 1[Ti(z3) = 4].

Compliers do not display intra-margin variation. The counterfactual choices vary only between

two treatment statuses: choices 4 or 0 in s4 and s6, and choices 4 or 2 in s5 and s7. This feature

ensures that the Wald estimand evaluates a weighted average of intended treatment effects.

Theorem T.5. t-EMCO implies OMC and UMC.

Proof. See Appendix A.11.

The t-EMCO is a particular case of monotonicity condition that satisfies both OMC and

UMC. Indeed, a saturated response matrix with respect to EMCO is also saturated with respect

to UMC, but unsaturated with respect to OMC. Results associated with OMC and UMC apply.

In particular, the 2SLS estimand evaluates a weighted average of per-unit treatment effects that

compares choice t with the remaining choices across compliers (Angrist and Imbens, 1995), and

each choice can be expressed by a separable equation on the propensity score and a latent variable

(Heckman and Pinto, 2018).

An incentive matrix L is said to satisfy the t-EMCO incentives when the following condition

applies:

t-EMCO Incentives : L[z, t] = L[z′, t] ∀z, z′ ∈ supp(Z), (38)

and L[z, t′] = L[z, t′′] ∀t′, t′′ ∈ T \ {t} and z ∈ supp(Z). (39)

This condition states that incentives for choice t are constant across all IV values, while the

incentives for the remaining choices are the same for any given IV-value. We can now state the

following result:

Theorem T.6. If L satisfy the t-EMCO incentives (38), then t-EMCO (35) holds.

22



Proof. See Appendix A.12.

Consider the IV example of this section where T ∈ {0, 2, 4} and Z ∈ {z1, z2, z3}. Examples of
4-EMCO incentives that generate the response matrix in (37) are:

L =

0 2 4[ ]0 0 0 z3
1/2 1/2 0 z2
1 1 0 z1

, L =

0 2 4[ ]1 1 1 z3
2 2 1 z2
3 3 1 z1

, L =

0 2 4[ ]−1 −1 1 z3
0 0 1 z2
1 1 1 z1

The key feature of these incentive matrices is that the incentives for choice 4 remain constant

among IV values while the incentives for choices 2 and 4 are the same given each IV-value. It

is easy to verify that EMCO incentives are monotonic and supermodular, which yield a response

matrix that jointly satisfy OMC and UMC.

5 An Empirical Exercise

We use our incentives framework to examine how human capital impacts the illegal migration of

poor Mexican families to the US. The US hosts approximately 12 million undocumented residents,

with nearly half originating from Mexico. According to Borjas (1987), migration decisions are

positively influenced by wage differentials between origin and destination countries but are offset

by migration costs. Their research points to a negative selection in migration patterns since lower-

skilled workers benefit the most from relocating to the US. This perspective is further corroborated

by Angelucci (2015). She finds that Oportunidades, Mexico’s paramount anti-poverty initiative,

spurred the emigration of lower-skilled, undocumented migrants to the US.

Behrman et al. (2005) emphasize that Oportunidades’ impact on schooling attendance boosts

basic English proficiency and analytical competencies, both pivotal skills for success in the US

labor market. Their analysis posits a non-monotonic relationship between education and migra-

tion: attaining fundamental skills heightens the propensity to migrate. Yet, further human capital

accumulation diminishes this likelihood, as it renders the domestic labor market more appealing

relative to its international counterpart. This pattern is also supported by Chiquiar and Hanson

(2005); Hanson (2006).

To elaborate, the Mexican education system is structured into three stages:

1. Primaria or Elementary School (Grades 1-6),

2. Secundaria or Middle School (Grades 7-9), and

3. Preparatoria or High School (Grades 10-12).

Fundamental English skills are introduced during Secundaria, as detailed in Table 1. Consequently,

completing Secundaria is expected to exerts a positive influence on migration decisions, while
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advancing from Secundaria to Preparatoria (or completing high school) is anticipated to have a

negative effect on migration.

We use a decade of panel data from the Oportunidades Program to examine the impact of

schooling on migration patterns. Oportunidades is a pioneering conditional cash transfer program

in Mexico. The program was launched in 1997 and it randomly assigned 505 rural villages to either

a treatment group (320 villages) or a control group (185 villages). Families in the treated villages

received bi-monthly cash transfers, which often amounted to 20% to 30% of their household income.

The transfer was contingent upon their school-age children attend school. Households in control

villages had to wait for two years before receiving these benefits (Gertler, 2004).

Our study employs panel data covering the period from 1997 to 2007 to assess the influence

of Oportunidades on U.S. migration among individuals who were 12 to 13 years old in 1997. This

age group comprises the participants most affected by the differential schooling incentives between

the treated and control groups. 20

The sample comprises more than 3,000 individuals residing in impoverished rural areas.

Schooling data were collected in 2003, and we utilize census data from 1997, 2003, and 2007 to

examine migration patterns. Approximately 18.0% of males and 10.3% of females migrate. The

majority of them move to the US between the ages of 16 and 22. Table 5 presents a statistical

overview of baseline variables categorized by gender. As anticipated, baseline variables exhibit a

balanced distribution across randomization arms, and none of the differences in means between the

assignment groups are statistical significance.

Following our previous notation, we use Z ∈ {z0, z1} for the randomization arms, T for years

schooling, and Y for the migration outcome. Figure 1 displays the distribution of schooling at

onset of the intervention in 1997 and six years after the intervention, in 2003. It is evident that

Oportunidades promotes schooling. Thus, a common approach to modeling such interventions is

to assume OMC, specifically, Ti(z0) ≤ Ti(z1) for all i ∈ I. The OMC provides a justification for

employing 2SLS regressions to examine the causal effect of Treatment T on the migration outcome

Y . The results from this well-known methodology are presented in Table 3.

In our sample, Oportunidades significantly increased migration patterns and schooling at-

tainment among males. Specifically, the intervention raised migration rates by approximately 3.0

percentage points for males. This represents an 22% increase compared to the migration probability

of control group males. In the realm of education, Oportunidades led to an increase of roughly one-

fourth of a school year. Table 3 also showcases the 2SLS regression where the random assignment

of Oportunidades acts as an IV to evaluate the impact of education on migration. The estimated

20The age range was also defined in accordance to two criteria: (1) the lower boundary is set high enough to ensure
that the schooling survey in 2003 measures the final schooling attainment; and (2) the upper boundary is set low
enough to include individuals who were 22 years old in 2007 when the migration data was collected.
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coefficient for males is around 0.060 and is statistically significant at 10% significance level.

The 2SLS analysis is useful to assess the overall impact of education on migration. However,

coefficient evaluates a weighted average per-unit treatment effect across all individuals that increase

their education when the instrument shifts from z0 to z1. It is difficult to relate this causal in-

terpretation with the migration questions we seek to address. In order to advance, we evaluate a

stylized model that benefits from the choice incentives and the observed patterns of school choices.

5.1 Stylized Model

We devise a stylized model that explores the tendency for education choices to cluster predominantly

around the completion of Secundaria (9 years of schooling), as shown in Figure 1. Recall that

completing Secundaria is a milestone in the analysis of the impact of schooling on migration since

basic English skills are taught during this stage. Thus we transform the schooling variable into

the index T ∈ {1, 2, 3} where T = 1 stand for schooling less than Secundaria, and T = 2 stand for

Secundaria competition, T = 3 stand for schooling beyond Secundaria.

Participants in our selected age group face three main schooling choices: (1) whether to

continue studying in the year of the intervention; (2) whether to complete Secundaria; and (3)

whether to continue studying beyond Secundaria. The treated group received cash transfers during

all school years, which provided incentives to complete Secundaria and additional incentives to

continue further studies. In contrast, the participants of the control group did not receive cash

transfers during the initial years of Secundaria, influencing their decision. However, the control

students who chose to continue their education received cash transfers a few years later, influencing

their choice to study beyond Secundaria. The Incentive matrix corresponding to these choice

incentives and its associated response matrix are presented below:

L =

1 2 3[ ]
0 0 1 z0
0 1 2 z1

∴ R =

s11 s22 s33 s12 s13[ ]
1 2 3 1 1 T (z0)
1 2 3 2 3 T (z1)

. (40)

The response matrix is obtained by applying Choice Rule (9) to the incentive matrix. It contains

three always-takers s11, s22, s33, and two compliers s12, s13. The incentives are t-monotonic for all

choices, leading to a saturated response matrix w.r.t. UMC. The incentives are also supermodular.

As a result, OMC holds, but the matrix is not saturated w.r.t. OMC since choice restrictions

eliminate type [2, 3]′.

The identification analysis stems from Theorem T.1. All type probabilities are (just) identi-

fied. Always-taker probabilities are given by:21

P (s11|X) = P (T = 1|z1, X), P (s22|X) = P (T = 2|z0, X), and P (s33|X) = P (T = 3|z0, X).

21We use P (s|X) and P (T = t|z,X) as short-hand notation for P (S = s|X) and P (T = t|Z = z,X) respectively.
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The probabilities for compliers are identified by:

P (s12|X) = P (T = 2|z1, X)− P (T = 2|z0, X), and P (s22|X) = P (T = 3|z1, X)− P (T = 3|z0, X).

There are six counterfactual outcomes that are identified. Counterfactual outcomes for always-

takers are given by:

E(Y (1)|s11) = E(Y |T = 1, z1, X), E(Y (2)|s22) = E(Y |T = 2, z0, X) and E(Y (3)|s33) = E(Y |T = 3, z0, X).

The remaining counterfactuals are identified as LATE-type parameters:

E(Y (1)|S ∈ {s12, s13}, X) = LATEX(1[T = 1]),

E(Y (2)|S = s12, X) = LATEX(1[T = 2]),

E(Y (3)|S = s13, X) = LATEX(1[T = 3]),

where: LATEX(W ) ≡ E(Y ·W |Z = z1, X)− E(Y ·W |Z = z0, X)

E(W |Z = z1, X)− E(W |Z = z0, X)
.

We are most interested in two causal effects: E(Y (2) − Y (1)|S = s12), which is the causal effect

of completing Secundaria on migration, and E(Y (3) − Y (1)|S = s13), which is the causal effect

of studying beyond Secundaria. Unfortunately, we cannot disentangle E(Y (1)|S ∈ {s12, s13}) into
E(Y (1)|S = s12) and E(Y (1)|S = s13) without additional assumptions. We solve this problem of

partial identification by invoking the assumption of comparable compliers:22

Comparable Compliers: Y (1) ⊥⊥ S|(T (z0) ̸= T (z1), X). (41)

The assumption states, that, conditioned on the compliers and on the baseline variables X, the

counterfactual outcome Y (1) is independent of the types. Effectively, this assumption enables the

point-identification of the model by equalizing the counterfactual means for Y (1) among compliers,

E(Y (1)|S = s12, X) = E(Y (1)|S = s13, X).

5.2 Estimating Type Probabilities

We devise a doubly robust estimator that employs machine learning techniques to evaluate causal

parameters. The method stems from the work of Navjeevan, Pinto, and Santos (2023) and has

desirable properties commonly shared by this type of estimator. The method yields asymptoti-

cally normal estimators that guarantees double robustness against misspecification (Robins et al.,

1995) and possesses the mixed bias property in (Chernozhukov et al., 2018). The method also

benefits from variety of plug-in machine learning techniques as described in Smucler et al. (2019),

Chernozhukov et al. (2022), and Chernozhukov et al. (2022).

To gain intuition, we examine the identification of type probabilities in greater detail. Let

PT |X(t) ≡ [P (T = t|Z = z0, X), P (T = t|Z = z1, X)]′ be the 2 × 1 vector of choice probabilities

across IV-values, and PT |X ≡ [PT |X(1)′,PT |X(2)′,PT |X(3)′]′ be the 6×1 vector of propensity scores.

Moreover, the 5× 1 vector of type probabilities conditioned on X is:

PS|X = [P (s11|X), P (s22|X), P (s33|X), P (s12|X), P (s13|X)]′.

22For examples of works that invoke this assumption, see, for instance, Mountjoy (2022); Navjeevan et al. (2023).
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These vectors are related by the equation PT |X = BPS|X , where B ≡ [B′
1,B

′
2,B

′
3]
′ is the 8 × 5

binary matrix that stacks the indicator matrices Bt = 1[R = t] across the treatment choices. The

response matrix R is defined in (40). In this notation, we can express each of the type probabilities

as a linear combination of the propensity scores:

P (S = s|X) = νsPZ|X such that νs ≡ ℓ′s(B
′B)−1B′. (42)

The term νs is primary in our analysis. It is a known 6× 1 vector defined as ℓ′s(B
′B)−1B′, where

ℓs is a 5 × 1 canonic vector that takes value one for type s and zero otherwise. Vector νs can

be understood as a map νs(z, t) from the support of (Z, T ) to R. In this notation, we can rewrite

equation (42) as:

P (S = s|X) =
∑
t∈T

∑
z∈Z

νs(z, t)P (T = t|Z = z,X). (43)

To construct the doubly robust estimator, we represent the type probability as the expectation of

a function κ such that P (S = s) = E(κs(T,Z,X)).23 The doubly robust estimator is based on the

following the orthogonal score representation of type probabilities:

P (S = s) =
∑
t∈T

EZX

(
κs(t, Z,X) ·

(
1[T = t]− P (T = t|Z,X)

))
+
∑
t∈T

EX

∑
z∈Z

νs(z, t)P (T = t|Z = z,X)

 ,

where EZX(·) is an expectation over the joint distribution of (Z,X) and EX(·) is an expectation

over X. The identifying moment condition has two nuisance parameters, the function κs(t, Z,X)

and the propensity score P (T = t|Z,X).We assess these nuances via plug-in estimators, that is, we

evaluate the propensity score P (T = t|Z,X) by h(Z,X)βt, and the kappa function κs(t, Z,X) by

h(Z,X)γs,t, where βt,γt are p-dimensional linear coefficients and h(Z,X) = [b1(Z,X), ..., bp(Z,X)]′

denotes a p-dimensional vector of function of (Z,X) including all the pairwise interactions of these

variables. In our application, h(Z,X) comprises X, Z, and their interaction. Appendix A.13

presents a detailed description of the estimation algorithm.

In Table 4, we present the estimated probabilities for each type. The aggregate probability

for the always-takers is approximately 0.90, indicating that 90% of the sample comprises students

who persist with their schooling choice towards Secundaria irrespective of their allocation to either

treatment or control groups. The probability for type s11 stands at around 0.43, suggesting that

nearly half of the sample consists of students who do not complete Secundaria, regardless of the

incentives from Oportunidades. The probability associated with type s22 is close to 0.34, denoting

that a third of the sample consistently chooses to finalize their Secundaria. Lastly, the probability

for type s33 is approximately 0.13, implying that a mere 13% of the students opt to pursue education

beyond Secundaria, irrespective of receiving the Oportunidades incentives or not.

The sum of the probabilities for compliers, s12 and s13, totals 0.093. This means that about

9% of the students change their choice towards completing Secundaria when the incentives provided

23See Navjeevan, Pinto, and Santos (2023) for a in-depth discussion of the rationale of this approach.

28



by Oportunidades are available. The majority of these students, about 7%, consists of participants

of type s12 who shift for not completing Secundaria to completing Secundaria. A smaller share

of sample, about 2%, comprises compliers that change their student decision from not completing

Secundaria when assigned to control to studying beyond Secondaria when assigned to the treatment.

5.3 Estimating Causal Effects

We now describe the doubly robust estimators used to evaluate the counterfactual outcomes and the

causal effects of our model. Our discussion mirrors the approach we took when investigating type

probabilities. To provide more insight, we examine the identification of counterfactual outcomes

through moment conditions.

Let EY |X(t) ≡ [E(Y · 1[T = t]|Z = z0, X), E(Y · 1[T = t]|Z = z1, X)]′ be the 2 × 1 vector

of conditional outcome moments. As mentioned, Bt = 1[R = t] denotes the binary matrix that

indicates which elements in the response matrix R in (40) takes value t ∈ {1, 2, 3}. We use this

notation to express the identified counterfactual outcomes – E(Y (1)|s11), E(Y (2)|s22), E(Y (3)|s33)
E(Y (2)|S = s12, X) and E(Y (3)|S = s13, X) – in the following fashion:

E(Y (t)|S = s)P (S = s|X) = νs,tEZ|X such that νs,t ≡ ℓ′sB
′
t(BtB

′
t)

−1, (44)

where ℓs is a 5×1 canonic vector that indicates type s. Similar to our analysis of type probabilities,

we can express νs,t as a function νs,t(z) from the support of Z to R. In this notation, we can rewrite

equation (44) as:

E(Y (t)1[S = s]|X)P (S = s|X) =
∑
z∈Z

νs,t(z)E(Y · 1[T = t]|Z = z,X). (45)

It is also worth noting that the response types probability associated with the identified outcome

counterfactuals can be identified as:

P (S = s|X) =
∑
z∈Z

νs,t(z)E(1[T = t]|Z = z,X). (46)

The doubly robust estimator comprises the joint evaluation of the expectation E(Y (t)1[S = s])

in (45), the probability P (S = s|X) and then taking the ratio of these estimates. Note that both

problems are related since they are associated with the same identification function νs,t(z). The

estimator for E(Y (t)1[S = s]) is based on the following orthogonal score:

E(Y (t)1[S = s]) = EZX

(
Y κs,t(Z,X) ·

(
Y 1[T = t]− E(Y 1[T = t]|Z,X)

))
+ EX

∑
z∈Z

νs,t(z)E(Y · 1[T = t]|Z = z,X)

 .

The function kappa is such that E(Y κs,t(Z,X)) = E(Y (t)1[S = s]) and E(κs,t(Z,X)) = P (S =

s). The estimator contains three nuance parameters: the propensity score P (T = t|Z,X) is es-

timated as by h(Z,X)βt, the outcome expectation E(Y · 1[T = t]|Z = z,X) by h(Z,X)θt, and
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the kappa function κs,t(t, Z,X) by h(Z,X)γs,t, where βt,θt,γt are p-dimensional linear coefficients

and h(Z,X) comprises X, Z, and their interaction. The steps of the estimator are closely related

to the estimation of type probabilities. Appendix A.14 describes the estimation algorithm in detail.

Recall that we aim to evaluate two causal effects: E(Y (2) − Y (1)|S = s12) and E(Y (2) −
Y (1)|S = s13). The procedure outlined in Appendix A.14 is tailored to estimate any counterfactual

outcome that is identified according to the response matrix R (40). These include E(Y (2)|S = s12)

and E(Y (3)|S = s13). The procedure could also be used to evaluate E(Y (1)|S ∈ {s12, s13}), since
it is also identified. The procedure however is not suitable to evaluate E(Y (1)|S = s12) and

E(Y (1)|S = s13) separately.

The additional assumption of comparable compliers (41) enable us to disentangle E(Y (1)|S ∈
{s12, s13}) into E(Y (1)|S = s12) and E(Y (1)|S = s13). The assumption implies that E(Y (1)|S ∈
{s12, s13}|X) = E(Y (1)|S = s12|X) and E(Y (1)|S ∈ {s12, s13}|X) = E(Y (1)|S = s13|X). Note

however that this assumption does not imply the unconditional equality E(Y (1)|S ∈ {s12, s13}) =
E(Y (1)|S = s12) = E(Y (1)|S = s13) because the distribution of baseline variables X may differ

across types s12 and s13. The modification of the procedure is necessary to account for the difference

in the distribution of baseline variables X between types. Navjeevan, Pinto, and Santos (2023) solve

the same problem in a different setting involving the mediation analysis of a choice model containing

seven types. We apply their solution to our setting. The estimation procedure is more complex

than the one used to the previous counterfactual outcomes. See Appendix A.15 for a detailed

description of the estimation algorithm.

Table 5 presents the causal effects of our model conditioned on different sets of baseline

variables. The first panel of the table presents the estimates for E(Y (2) − Y (1)|S = s12), which

evaluates the casual effect of completing Secundaria on migration for the subset of compliers that

change from not completing Secundaria to completing it when the incentives of Oportunidades

are available. These compliers account for about 7% of the sample. We find that completing

Secundaria has a substantial impact on the decision to migrate. The causal effect is about 0.48 and

the estimates are statistically significant at 10% significance level.

The second panel of the table displays the estimates for E(Y (3) − Y (1)|S = s13), which

is the causal effect of changing education attainment from not completing Secundaria to study

beyond Secundaria on migration. This effect is associated to 2% of the participants. It comprises

the subset of compliers that decide to study beyond Secundaria due to the incentives offered by

Oportunidades. We find the effect to be negative, relatively small, and not statistically significant.

The point estimate of the effect ranges from -0.10 to -0.20 when conditioned on baseline variables.

The main feature of this empirical exercise is the use of incentive analysis to assess the question

of whether schooling has a non-monotonic effect on the decision to migrate to the US. We focus

on the age range most likely to respond to the schooling incentives offered by Oportunidades. Our

stylized model enables us to characterize five types that are driven by economic behavior. We
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are able to evaluate the share of the participants that do respond to Oprtunidades’ incentives

and evaluate the causal effects of schooling on migration for those who respond to the incentives.

We find compelling evidence that completing Secundaria increases the likelihood of migration.

Our key empirical finding however is the difference between the causal effects. While completing

Secundaria has a strong effect on the propensity to migrate, studying beyond Secundaria does

not. These findings corroborate the hypothesis of several works suggesting a negative and non-

monotonic selection of migrants regarding education (Behrman et al., 2005; Borjas, 1987; Chiquiar

and Hanson, 2005).
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Table 2: Statistical Description of Baseline Variables

Males Females

Treated Control Diff. Treated Control Diff.

Mean Mean Means Mean Mean Means

Age at Onset 11.930 11.929 0.000 11.872 11.909 -0.036
s.e. 0.572 0.553 0.028 0.567 0.584 0.029

Family Speaks Indigenous Language 0.417 0.469 -0.052 0.409 0.425 -0.016
s.e. 0.493 0.499 0.025 0.492 0.495 0.025

Household Assets Index 624.27 616.39 7.880 618.81 625.23 -6.428
s.e. 88.546 98.092 4.685 89.707 91.044 4.542

Number of Household Members 7.581 7.476 0.105 7.625 7.594 0.031
s.e. 2.195 2.097 0.106 2.118 2.049 0.104

Household Members Younger than 17 4.739 4.702 0.037 4.789 4.767 0.022
s.e. 1.784 1.736 0.087 1.705 1.702 0.085

County USA Migration Index -0.155 -0.170 0.015 -0.115 -0.183 0.068
s.e. 0.843 0.919 0.045 0.878 0.908 0.046

Home Ownership 0.969 0.951 0.018 0.971 0.955 0.016
s.e. 0.174 0.216 0.010 0.167 0.207 0.010

Schooling at Onset 4.546 4.407 0.140 4.535 4.611 -0.076
s.e. 1.618 1.630 0.081 1.577 1.596 0.080

Sample Size 1027 674 1048 645

This columns of this table presents the statistical description of baseline variables by gender. The first row associated to each
variable displays the treatment mean, control mean and the mean difference for males and females. The second row displays
the standard deviation of the treated and control means and the standard error for the difference-in-means estimator.
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Table 3: Standard 2SLS Analysis on the Effect of Oportunidades on Schooling and Migration

Males Females
Model 1 Model 2 Model 3 Model 4 Model 1 Model 2 Model 3 Model 4

Effects of the Oportunidades Intervention

Migration 0.037 0.033 0.029 0.031 0.005 -0.002 -0.001 0.001
s.e. 0.020 0.019 0.018 0.018 0.016 0.016 0.015 0.015

p-val 0.061 0.073 0.113 0.094 0.753 0.873 0.937 0.965

Schooling 0.502 0.522 0.533 0.521 0.022 0.044 0.050 0.076
s.e. 0.121 0.122 0.122 0.122 0.126 0.128 0.128 0.128

p-val 0.000 0.000 0.000 0.000 0.860 0.733 0.695 0.554

Effects of Schooling on Migration

2SLS 0.073 0.064 0.055 0.059 0.227 -0.057 -0.024 0.009
s.e. 0.043 0.039 0.037 0.038 1.478 0.390 0.313 0.205

p-val 0.092 0.099 0.135 0.118 0.878 0.885 0.938 0.965

OLS -0.005 0.000 0.002 0.002 -0.001 -0.001 -0.001 -0.001
s.e. 0.004 0.004 0.004 0.004 0.003 0.003 0.003 0.003

p-val 0.259 0.980 0.663 0.549 0.803 0.719 0.801 0.792

The table comprises four panels. The first panel displays the causal effects of the Oportunidades on migration. The second
panel displays the effects on Schooling (measured in 2003), it is also the first stage for the 2SLS on the third panes, that
evaluates the causal effect of Schooling on migration using the Oportunidades random assignment as an instrumental variable
for schooling. Each panel presents the estimates by gender across four models that differ in terms of conditioning variables.
Model 1 does not use conditioning variables. Model 2 employs age at onset and county migration index. Model 3 adds family
characteristics: family members speak indigenous language, number of household members, and number of teenagers. Model
4 includes household assets and house ownership. Estimates consists on the effect, its standard error and the double-sided
p-value associated with inference that tests if the effect is equal to zero. All estimates are based on the standard OLS and 2SLS
regressions. Inference employs clustered errors.
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Table 4: Type Probabilities and Causal Effects for Males

Type Probabilities Model 1 Model 2 Model 3 Model 4

P (S = s11) 0.436 0.436 0.435 0.436
s.e. 0.016 0.016 0.016 0.016

p-val 0.000 0.000 0.000 0.000

P (S = s22) 0.337 0.338 0.337 0.340
s.e. 0.019 0.019 0.019 0.019

p-val 0.000 0.000 0.000 0.000

P (S = s33) 0.133 0.133 0.130 0.131
s.e. 0.014 0.014 0.014 0.014

p-val 0.000 0.000 0.000 0.000

P (S = s44) 0.071 0.071 0.070 0.068
s.e. 0.024 0.024 0.025 0.025

p-val 0.004 0.004 0.005 0.007

P (S = s55) 0.022 0.023 0.026 0.026
s.e. 0.018 0.018 0.018 0.018

p-val 0.206 0.181 0.139 0.149

This table presents the estimates of type probabilities according to the doubly robust orthogonal score estimator described in
this section. Estimates are presents for four models that vary in the set of baseline variables X that we seek to condition on.
Model 1 does not use baseline variables. Model 2 employs age at onset and county migration index. Model 3 adds family
characteristics: family members speak indigenous language, number of household members, and number of teenagers. Model
4 includes household assets and house ownership. Estimates consists on the probability, its standard error and the two-sided
p-value associated with inference that tests if the effect is equal to zero. Standard errors are computed using the multiplier
bootstrap method.

Table 5: Causal Effects for Males

Causal Effects Model 1 Model 2 Model 3 Model 4

E(Y (2)− Y (1)|S = s21) 0.480 0.487 0.472 0.503
s.e. 0.265 0.261 0.261 0.287

p-val 0.070 0.062 0.071 0.079

E(Y (3)− Y (1)|S = s31) -0.001 -0.118 -0.135 -0.194
s.e. 0.274 0.320 0.310 0.358

p-val 0.998 0.713 0.662 0.587

This table presents the estimates of the causal effects for males. The estimates are obtained according to the doubly robust
orthogonal score estimator described in this section. The estimates comprise four models that differ in terms of the set of
baseline variables we seek to control for. Model 1 does not include baseline variables. Model 2 employs age at onset and
county migration index. Model 3 adds family characteristics: family members speak indigenous language, number of household
members, and number of teenagers. Model 4 includes household assets and house ownership. Estimates consists on the effect,
its standard error and the two-sided p-value associated with inference that tests if the effect is equal to zero. Standard errors
are computed using the multiplier bootstrap method.
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6 Summary and Conclusions

This paper has provided a fresh perspective on the identification of causal effects in instrumental

variable (IV) models within economics. While the conventional approach has focused on developing

novel monotonicity or separability conditions, we have proposed a departure from this mindset.

Our approach is rooted in the utilization of economic incentives and classical economic behavior

to identify causal parameters in IV models with multiple choices and categorical instruments. We

introduced a flexible framework based on revealed preference analysis, which translates choice

incentives into identification conditions. This method has several notable advantages, most notably

its independence from statistical or functional form assumptions. Instead, identification conditions

arise organically from fundamental economic principles applied to choice incentives, enhancing both

credibility and understanding.

Moreover, our framework is versatile enough to accommodate a wide range of non-trivial

identification assumptions, making it applicable in scenarios where traditional IV assumptions may

not hold. We have demonstrated its flexibility by examining well-established examples of choice

incentives in the policy evaluation literature, showcasing its adaptability to real-world empirical

research.

We employ our analytical framework to investigate the migration patterns of impoverished

Mexican households to the US. A substantial literature on migration investigates the relationship

between education attainment and the likelihood of migration. Seminal work of Borjas (1987, 1994)

suggests a negative selection in which those with lowest education benefit the most from moving

to the US. On the other hand, Behrman et al. (2005); Chiquiar and Hanson (2005); Hanson (2006)

posits a non-monotonic relationship between education and migration, where the fundamental skills

such as basic English proficiency taught in Secundaria (middle school) increase the propensity to

migrate while additional education reduces migration.

We utilize data from Oportunidades, the largest and most significant anti-poverty program in

Mexico, to examine whether schooling has a non-monotonic impact on the decision to migrate to

the United States. Employing our incentive framework, we identify two causal effects of education

on migration for students responding to the schooling incentives provided by Oportunidades.

Specifically, we assess the impact of completing Secundaria and the effects of pursuing ed-

ucation beyond this level. Our findings provide compelling evidence that completing Secundaria

increases the likelihood of migration, whereas advancing schooling beyond middle school has a neg-

ative effect on migration. We estimate our model using novel machine learning techniques that

assure double robustness of our estimates.

In the broader context of economic research, this paper contributes to the growing body of

literature that leverages revealed preference analysis to enhance the identification of causal effects in

IV models. Our approach offers a valuable tool for economists grappling with identification issues in
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diverse and non-standard empirical settings. We make the case that combining economic incentives

and classical behavior strengthen the foundations of IV analysis and empowers researchers with a

useful tool to evaluate such models.
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