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A Model Properties and Identification Analyses

A.1 Proof of Theorem T.1

We use the following auxiliary lemma to prove the result:

Lemma L.1. Let a linear system y = Bx, where B is a real-valued matrix with full row-rank

and ξ be a vector with the same dimension of x. Thus, ξ′x is point identified if and only if

ξ′ξ = ξ′B′(BB′)−1Bξ.

Proof. The general solution for x in the system of linear equations represented by y = Bx is:24

y = Bx ⇒ x = B+y + (I −B+B)λ (47)

where λ is an arbitrary real-valued |x|-dimension vector, I is an identity matrix of the same

dimension and B+ is the Moore–Penrose Pseudoinverse of matrix B.25 It follows that a linear

combination ξ′x is point identified if and only if ξ′(I − B+B) = 0. Note that B+B denotes an

orthogonal projection since (B+B)′ = B+B and (B+B)·(B+B) = B+B holds. Thus, it is also the

case that I−B+B is an orthogonal projection and therefore (I−B+B)(I−(B+B))′ = I ′−(B+B).

Combining these properties, we have that:

ξ′(I −B+B) = 0 ⇔ ξ′(I −B+B)(ξ′(I −B+B))′ = 0 ⇔ ξ′(I −B+B)ξ = 0. ⇔ ξ′ξ = ξ′B+Bξ.

Note that if matrix B has full row rank, the pseudo-inverse matrix is given by B+ = B′(BB′)−1.26

We can combine these properties to state that ξ′x is point identified if and only if ξ′ξ = ξ′B′(BB′)−1Bξ.

Equation (6) establishes the following systems of linear equations:

QZ(t)⊙ PZ(t) = Bt

(
QS(t)⊙ PS

)
and PZ(t) = BtPS for all t ∈ T .

We seek to examine the identification of E(Y (t)|S ∈ S̃) for some response type set S̃ ⊂ S. Let
b(S̃) be the NS × 1 vector that indicates the types that belongs to set S̃, namely:

b(S̃) =
[
1[s1 ∈ S̃], ...,1[sNS

∈ S̃]
]′
.

Thus we can express E(Y (t)|S ∈ S̃) as:

E(Y (t)|S ∈ S̃) =
b(S̃)′

(
QS(t)⊙ PS

)
b(S̃)′PS

. (48)

According to Lemma L.1, the criteria for the identification of both the numerator and the de-

nominator of the ratio in (48) is given by b(S̃)′b(S̃) = b(S̃)′B′
t(BtB

′
t)
−1Btb(S̃). Note that b(S̃) is

an indicator vector. Thus, b(S̃)′b(S̃) is simply the cardinality of S̃, that is, b(S̃)′b(S̃) = |S̃|.
The term Btb(S̃) is the sum of the columns of Bt corresponding to the types in S̃, that is,

24See Magnus and Neudecker (1999) for a general discussion of linear systems.
25The Moore–Penrose Pseudoinverse B+ of matrix B is unique and defined by the following properties: (1)

BB+B = B; (2) B+BB+ = B+; (3) B+B = (B+B)′; and (4) BB+ = (BB+)′.
26See Magnus and Neudecker (1999).
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Btb(S̃) =
∑

s∈S̃ Bt[·, s]. Combining these results, we have the criteria:

b(S̃)′b(S̃) = b(S̃)′B′
t(BtB

′
t)

−1Btb(S̃) ⇔

(∑
s∈S̃ Bt[·, s]

)′ (
BtB

′
t

)−1
(∑

s∈S̃ Bt[·, s]
)

|S̃|
= 1.

This result proves the first part of the theorem. The second part of the theorem employs the

general solution of linear systems in (47). If the identification criteria holds, then P (S ∈ S̃) can be

expressed as:

P (S ∈ S̃) = b(S̃)′B+
t PZ(t) = b(S̃)′Bt

(
BtB

′
t

)−1
PZ(t) =

(∑
s∈S̃

Bt[·, s]
)′ (

BtB
′
t

)−1
PZ(t).

In the same token, the identification of E(Y (t)|S ∈ S̃)P (S ∈ S̃) is given that:

E(Y (t)|S ∈ S̃)P (S ∈ S̃) = b(S̃)′B+
t

(
QZ(t)⊙ PZ(t)

)
= b(S̃)′B′

t

(
BtB

′
t

)−1 (
QZ(t)⊙ PZ(t)

)
=
(∑

s∈S̃

Bt[·, s]
)′ (

BtB
′
t

)−1 (
QZ(t)⊙ PZ(t)

)
.

A.2 Applying Theorem T.1 to LATE

Consider the LATE model where T ∈ {t0, t1}, Z ∈ {z0, z1}, and the monotonicity condition

1[Ti(z0) = t1] ≤ 1[Ti(z1) = t1]∀i holds. This model admits three types: never-takers snt = [t0, t0]
′,

compliers sc = [t0, t1]
′, and always-takers sat = [t1, t1]

′. The corresponding response matrix R and

the binary matrices Bt0 ≡ 1[R = t0], Bt1 ≡ 1[R = t1] are:

R =

snt sc sat[ ]
t0 t0 t1 T (z0)

t0 t1 t1 T (z1)
∴ Bt0 =

snt sc sat[ ]
1 1 0 Ti(z0)

1 0 0 Ti(z1)
, Bt1 =

snt sc sat[ ]
0 0 1

0 1 1
.

(49)

It is useful to define the identification criteria H[t, s] ≡ Bt[·, s]′
(
BtB

′
t

)−1
Bt[·, s]. According to

Theorem T.1, E(Y (t)|S = s) is identified if H[t, s] = 1. The following equation computes the

identification criteria H[t1, sc] for the treated compliers E(Y (t1)|S = sc) of the LATE model:

H[t1, sc] = Bt1 [·, sc]′
(
Bt1B

′
t1

)−1
Bt1 [·, sc] = [ ]0 1

[0 0 1
0 1 1

]0 0
0 1
1 1




−1 [ ]
0
1

= 1,

H[t1, sc] = 1 means that E(Y (t1)|S = sc) is identified, and, according to Theorem T.1, the
identification equation for E(Y (t1)|S = sc) is given by:
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E(Y (t1)|S = sc) =

[
Bt1 [·, sc]′

(
Bt1B

′
t1

)−1
]
·

(
QZ(t1)⊙ PZ(t1)

)
[
Bt1 [·, sc]′

(
Bt1B

′
t1

)−1
]
·

(
PZ(t1)

) (50)

=

[
−1 1

]
·

E(Y |T = t1, Z = z0)P (T = t1|Z = z0)
E(Y |T = t1, Z = z1)P (T = t1|Z = z1)


[
−1 1

]P (T = t1|Z = z0)
P (T = t1|Z = z1)


(51)

=
E(Y ·Dt1 |Z = z1)− E(Y ·Dt1 |Z = z0)

E(Dt1 |Z = z1)− E(Dt1 |Z = z0),
, (52)

where Dt1 ≡ 1[T = t1]. The parameter can be estimated by a 2SLS regression that uses Z to

instrument the effect of the endogenous choice indicator Dt1 on the outcome variable Y ·Dt1 . The

the following Identification Matrix displays the value of the identification criteria H[t, s] for all

(t, s) ∈ {t0, t1} × {sn, sc, s1} of the LATE model:

LATE Identification Matrix H =

snt sc sat[ ]
1 1 0 t0

0 1 1 t1
(53)

The matrix indicates that the identification status of six counterfactual outcomes. Four counterfac-

tual outcomes are identified: E(Y (t0)|S = sc) and E(Y (t1)|S = sc) for compliers, E(Y (t0)|S = snt)

for never-takes, and E(Y (t1)|S = sa) for always-taker. Neither E(Y (t1)|S = snt) or E(Y (t0)|S =

sat) are identified, indeed, they are not even defined. The expression that identifies the counter-

factual outcome for treated compliers, E(Y (t1)|S = sc) is presented in equations (50)–(52). The

remaining expressions according to Theorem T.1 are displayed below:

E(Y (t0)|S = snt) =
Bt0 [·, snt]′

(
Bt0B

′
t0

)−1 · (QZ(t0)⊙ PZ(t0))

Bt0 [·, snt]′
(
Bt0B

′
t0

)−1 · PZ(t0)
=
E(Y ·Dt0 |Z = z1)

E(Dt0 |Z = z1),
,

E(Y (t1)|S = sat) =
Bt1 [·, sat]′

(
Bt1B

′
t1

)−1 · (QZ(t1)⊙ PZ(t1))

Bt1 [·, sat]′
(
Bt1B

′
t1

)−1 · PZ(t1)
=
E(Y ·Dt1 |Z = z0)

E(Dt1 |Z = z0),
,

E(Y (t0)|S = sc) =
Bt0 [·, sc]′

(
Bt0B

′
t0

)−1 · (QZ(t0)⊙ PZ(t0))

Bt0 [·, sc]′
(
Bt0B

′
t0

)−1 · PZ(t0)
=
E(Y ·Dt0 |Z = z0)− E(Y ·Dt0 |Z = z1)

E(Dt0 |Z = z0)− E(Dt0 |Z = z1),
.

We can combine the identification equations for the treated and untreated compliers to obtain

the well-known LATE expression:

E(Y (t1)− Y (t0)) =
E(Y |Z = z1)− E(Y |Z = z0)

P (T = t1|Z = z1)− P (T = t0|Z = z1)
.

Now consider the LATE model in which we relax the monotonicity condition. In this case,
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the response matrix and the corresponding identification matrix are:

R =

snt sc sat sd[ ]
t0 t0 t1 t1 Ti(z0)

t0 t1 t1 t0 Ti(z1)
⇒ H =

snt sc sat sd[ ]
2/3 2/3 0 2/3 t0

0 2/3 2/3 2/3 t1

Note that none of the elements of the identification matrix are equal to one, which indicates that

there are no point-identified counterfactuals when the monotonicity condition is relaxed.

A.3 Using Revealed Preference Analysis to Generate Choice Restrictions

Our choice model stems from a classical economic framework where the potential choice of agent i

for a fixed IV-value z is characterized by the following utility maximization problem:

Choice Equation : Ti(z) = argmaxt∈T

(
max

g∈Bi(Zi,t)
ui(t, g)

)
. (54)

The real-valued utility function ui : T × RK
+ represents the rational preferences of agent i towards

the bundle (t, g) where t is the treatment status and g is a K-dimensional vector of unobserved con-

sumption goods. The set Bi(z, t) ⊂ RK
+ stands for the potential budget set of consumption goods g

of agent i when the treatment is fixed to t ∈ T and the instrument is fixed to the value z ∈ Z. The
budget set is broadly interpreted to encompass various decisions extending beyond traditional con-

sumption goods. It can include decisions regarding education attainment, neighborhood selection,

and time allocation depending on the empirical setting under examination.

The incentive matrix L characterises budget set relationships in which bigger incentives cor-

respond to larger budget sets for a given a choice t :

Budget Relationships: L[z, t] ≤ L[z′, t] ⇒ Bi(z, t) ⊆ Bi(z
′, t). (55)

To put in context, consider the LATE model where T = t1 denotes college enrollment and T = t0

denotes no college. Z ∈ is a randomly assigned tuition discount, z1 if the discount is granted and

z0 if not. The LATE incentive matrix yields the following budget set relations:

L =

t0 t1[ ]
0 0
0 1

z0
z1︸ ︷︷ ︸

LATE Incentive Matrix

⇒ Bi(z0, t0) = Bi(z1, t0)
Bi(z0, t1) ⊂ Bi(z1, t1)︸ ︷︷ ︸

Implied Budget Set Relationships

(56)

The budget set equality Bi(z0, t0) = Bi(z1, t0) implies that when the choice is set to no college

t0, the tuition discount is irrelevant. Conversely, Bi(z0, t1) ⊂ Bi(z1, t1) suggests that the tuition

discount increases agent i’s budget if they choose to attend college.

Budget relationships enable us to use the Weak Axiom of Revealed Preference (WARP) of

Richter (1971). Bundles (t, g) and (t′, g′) are said to be available given z if g ∈ Bi(z, t) and

g′ ∈ Bi(z, t
′). If bundle (t, g) is chosen by agent i when (t, g) and (t′, g′) are available, then (t, g) is
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said to be directly and strictly revealed preferred to (t′, g′), that is, (t, g) ≻d
i,z (t

′, g′). WARP states

that if (t, g) revealed preferred to (t′, g′) under z ∈ Z, then (t′, g′) cannot be revealed preferred to

(t, g) under z′ ∈ Z \ {z}. Notationally, we write that:

WARP: (t, g) ≻d
i,z (t

′, g′) ⇒ (t′, g′) \≻d
i,z′ (t, g). (57)

The following lemma uses WARP and the budget relations (55) to translate incentives into choice

restrictions.

Lemma L.2. Let a choice model with an incentive matrix L. Under the budget relationships (55)

and WARP (57), the following choice rule holds:

WARP Rule: If Ti(z) = t, and L[z′, t′]−L[z, t′] ≤ 0 ≤ L[z′, t]−L[z, t] then Ti(z
′) ̸= t′. (58)

Proof. Ti(z) = t implies that there exists g ∈ Bi(z, t) such that (t, g) ≻d
i,z (t

′, g′) for all g′ ∈ Bi(z, t
′).

The inequality 0 ≤ L[z′, t] − L[z, t] implies that the budget set associated with t increases as we

move from z to z′, Bi(z, t) ⊆ Bi(z
′, t). Thus the bundle (t, g) remains available under z′. On the

other hand, L[z′, t′] − L[z, t′] ≤ 0 implies that the budget set associated with t′ decreases as

we move from z to z′, Bi(z
′, t′) ⊆ Bi(z, t

′). Thus any bundle (t′, g′′) that is available under z′,

(t′, g′′); g′′ ∈ Bi(z
′, t′) were also available under z. Thus, according to WARP, agent i still prefers

(t, g) to any (t′, g′′); g′′ ∈ Bi(z
′, t′), that is, (t′, g′′) \≻d

i,z′ (t, g). This implies that agent i does not

choose t′ under z′, Ti(z
′) ̸= t′.

As mentioned in the main paper, applying the WARP Rule 58 to LATE incentives (56) yields

the choice restriction Ti(z0) = t1 ⇒ Ti(z1) ̸= t0, which means that if the student chooses college

under no incentives, it will not choose otherwise when incentives to enroll in college are offered.

It is possible to exploit additional economic choice behaviors that enable us to enhance the

WARP rule. For instance, consider the choice of a college student who debates between two

majors: electrical or mechanical engineering. Suppose the student chooses electrical over mechanical

engineering under no tuition discount. In that case, it is natural to assume that the student will

maintain choice when granted a tuition discount that applies to both majors. This behavior is

captured by the condition called Normal Choice:

Normal Choice: t ≻i,z t
′ and L[z′, t′]−L[z, t′] = L[z′, t]−L[z, t] then t ≻i,z′ t′ holds, (59)

where t ≻i,z t
′ means that there is g ∈ Bi(z, t) such that (t, g) ≻i,z (t′, g′) for all g′ ∈ Bi(z, t

′).

Normal Choice states that if an agent i prefers t instead of t′ under z, and if the change in incentives

for choosing either t or t′ is the same under z′, then agent i maintains its preference of t over t′

under z′.27 WARP and Normal Choice (59) yield the following choice rule:

27Normal Choice is a no-crossing condition on the ranking of choice preferences that maintains the relative rank
of two choices that share the same incentives. The normal choice is related to the notion of normal goods. Consider
an agent that debates between two goods a and b. Suppose a discount of d dollars is applied to both goods. This
discount can be understood as an increase in income of d dollars since the agent will benefit from it regardless of his
choice. An increase in income does not decrease the consumption of a normal good. If the agent decides to buy a
under no discount, it will continue to consume one unit of good a when the discount is available.
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Lemma L.3. Let a choice model with an incentive matrix L. Under the budget relationships (55),

WARP (57), and Normal Choice (59), the following choice rule holds:

Choice Rule: If Ti(z) = t and L[z′, t′]−L[z, t′] ≤ L[z′, t]−L[z, t] then Ti(z
′) ̸= t′. (60)

Proof. Let δt ≡ L[z′, t] − L[z, t] and δt′ ≡ L[z′, t′] − L[z, t′], where δt′ ≤ δt. Note that we can

set L[z, t] = L[z, t′] = 0, L[z′, t] = δt, and L[z′, t′] = δt′ without loss of generality. Note also

that Ti(z) = t means that t ≻i,z t
′. Now consider an auxiliary instrument z∗ that sets L[z∗, t] =

L[z∗, t′] = δt′ .We first examine the change from z to z∗. In this case, we have that L[z∗, t′]−L[z, t′] =

L[z∗, t]−L[z, t] = δt′ . According to Normal Choice (59), we have that t ≻i,z∗ t
′. Now consider the

change from z∗ to z′. The inequality δt′ ≤ δt implies that: L[z′, t′]−L[z∗, t′] = 0 ≤ L[z′, t]−L[z∗, t].

By WARP Rule (58), we have that t ≻i,z′ t
′ and therefore Ti(z

′) ̸= t′.

As mentioned, the Choice Rule highlights a cornerstone principle of rational choice theory,

which posits that an individual’s preferences will remain consistent unless there is a compelling

incentive to choose otherwise. Specifically, if an agent chooses t over t′ when presented with z-

incentives, and if z′-incentives are at least as persuasive for choice t as they are for t′, then the

agent will not choose t′ over t.

A.4 Additional Analyses of the IV Model in Example E.3

The incentive matrix of Example E.3 is:

L =

t0 t1 t2[ ]0 0 0
0 1 0
0 0 1

z0
z1
z2

(61)

The incentive matrix (61) justifies two monotonicity conditions:

1[Ti(z0) = t1] ≤ 1[Ti(z1) = t1] (62)

1[Ti(z0) = t2] ≤ 1[Ti(z2) = t2]. (63)

These monotonicity conditions eliminate 12 out of the 27 possible response types as described in

Panel B of Table A.1.

The remaining 15 response types are displayed in response matrix below:

R =

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 t0 t0 t0 t0 t0 t0 t0 t0 t0 t2 t1 t1 t2 t2 t2

t0 t0 t0 t1 t1 t1 t2 t2 t2 t2 t1 t1 t0 t1 t2

t0 t1 t2 t0 t1 t2 t0 t1 t2 t0 t1 t2 t2 t2 t2

Ti(z0)

Ti(z1)

Ti(z2)

(64)

The response matrix is then used as input to generate the identification matrix H, which is a

N×NT -dimensional matrix whose elements are given by H[t, s] ≡ Bt[·, s]′
(
BtB

′
t

)−1
Bt[·, s].
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H =

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 11/27 8/27 8/27 8/27 5/27 5/27 8/27 5/27 5/27 1/3 0 0 1/3 0 0

0 4/13 0 7/26 11/26 7/26 0 4/13 0 0 15/26 15/26 0 7/26 0

0 0 16/75 0 0 16/75 19/75 19/75 31/75 34/75 0 16/75 1/3 1/3 8/25

t0

t1

t2

Note that none of the entries of the identification matric is equal to one. According to T.1,

this means that not a single counterfactual outcome of the type E(Y (t)|Ss); (t, s) ∈ {t0, t1, t2} ×
{s1, ..., s15} is identified. We conclude that the elimination of response type due to the monotonicity

conditions (62)–(63) is not sufficient to point-identify counterfactual outcome.

Revealed preference analysis is more effective in eliminating types than the monotonicity con-

ditions. Table A.2 applies choice rule (9) to the incentive matrix (61). There are 22 binding

restrictions. Table A.3 summarise these 22 choice restrictions of Table A.2 into the five restric-

tions,28 and Panel C of Table (A.1) shows that these five restrictions eliminate 19 out of the 27

possible response types.

Table A.2: Choice Restrictions of Example E.3 Due to Revealed Preference Analysis

Revealed Incentive Choice

# Choice Inequalities Statement

Tı(z) = t L[z′, t′]−L[z, t′] ≤ 0 ≤ L[z′, t]−L[z, t] T (z′) ̸= t′

1 Tı(z0) = t0, L[z2, t1]−L[z0, t1] = 0 ≤ 0 = L[z2, t0]−L[z0, t0] Tı(z2) ̸= t1
2 Tı(z0) = t0, L[z1, t2]−L[z0, t2] = 0 ≤ 0 = L[z1, t0]−L[z0, t0] Tı(z1) ̸= t2

3 Tı(z0) = t1, L[z1, t0]−L[z0, t0] = 0 ≤ 1 = L[z1, t1]−L[z0, t1] Tı(z1) ̸= t0
4 Tı(z0) = t1, L[z2, t0]−L[z0, t0] = 0 ≤ 0 = L[z2, t1]−L[z0, t1] Tı(z2) ̸= t0
5 Tı(z0) = t1, L[z1, t2]−L[z0, t2] = 0 ≤ 1 = L[z1, t1]−L[z0, t1] Tı(z1) ̸= t2

6 Tı(z0) = t2, L[z1, t0]−L[z0, t0] = 0 ≤ 0 = L[z1, t2]−L[z0, t2] Tı(z1) ̸= t0
7 Tı(z0) = t2, L[z2, t0]−L[z0, t0] = 0 ≤ 1 = L[z2, t2]−L[z0, t2] Tı(z2) ̸= t0
8 Tı(z0) = t2, L[z2, t1]−L[z0, t1] = 0 ≤ 1 = L[z2, t2]−L[z0, t2] Tı(z2) ̸= t1

9 Tı(z1) = t0, L[z0, t1]−L[z1, t1] = −1 ≤ 0 = L[z0, t0]−L[z1, t0] Tı(z0) ̸= t1
10 Tı(z1) = t0, L[z2, t1]−L[z1, t1] = −1 ≤ 0 = L[z2, t0]−L[z1, t0] Tı(z2) ̸= t1
11 Tı(z1) = t0, L[z0, t2]−L[z1, t2] = 0 ≤ 0 = L[z0, t0]−L[z1, t0] Tı(z0) ̸= t2

12 Tı(z1) = t2, L[z0, t0]−L[z1, t0] = 0 ≤ 0 = L[z0, t2]−L[z1, t2] Tı(z0) ̸= t0
13 Tı(z1) = t2, L[z2, t0]−L[z1, t0] = 0 ≤ 1 = L[z2, t2]−L[z1, t2] Tı(z2) ̸= t0
14 Tı(z1) = t2, L[z0, t1]−L[z1, t1] = −1 ≤ 0 = L[z0, t2]−L[z1, t2] Tı(z0) ̸= t1
15 Tı(z1) = t2, L[z2, t1]−L[z1, t1] = −1 ≤ 1 = L[z2, t2]−L[z1, t2] Tı(z2) ̸= t1

16 Tı(z2) = t0, L[z0, t1]−L[z2, t1] = 0 ≤ 0 = L[z0, t0]−L[z2, t0] Tı(z0) ̸= t1
17 Tı(z2) = t0, L[z0, t2]−L[z2, t2] = −1 ≤ 0 = L[z0, t0]−L[z2, t0] Tı(z0) ̸= t2
18 Tı(z2) = t0, L[z1, t2]−L[z2, t2] = −1 ≤ 0 ≤ 0 = L[z1, t0]−L[z2, t0] Tı(z1) ̸= t2

19 Tı(z2) = t1, L[z0, t0]−L[z2, t0] = 0 ≤ 0 = L[z0, t1]−L[z2, t1] Tı(z0) ̸= t0
20 Tı(z2) = t1, L[z1, t0]−L[z2, t0] = 0 ≤ 1 = L[z1, t1]−L[z2, t1] Tı(z1) ̸= t0
21 Tı(z2) = t1, L[z0, t2]−L[z2, t2] = −1 ≤ 0 = L[z0, t1]−L[z2, t1] Tı(z0) ̸= t2
22 Tı(z2) = t1, L[z1, t2]−L[z2, t2] = −1 ≤ 1 = L[z1, t1]−L[z2, t1] Tı(z1) ̸= t2

This table displays the binding choice restrictions generated by choice rule (9) to the incentive matrix of Example

E.3.

28The remaining restrictions do not eliminate any additional response types that is not already covered by these
five restrictions.
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Table A.3: Summary of Choice Restrictions generated by applying Choice Rule (9) to Example
E.3

# Choice Restrictions

1,2 Tı(z0) = t0 ⇒ Ti(z1) ̸= t2 and Ti(z2) ̸= t1
3,4,5 Tı(z0) = t1 ⇒ Ti(z1) = t1 and Ti(z2) ̸= t0
6,7,8 Tı(z0) = t2 ⇒ Ti(z1) ̸= t0 and Ti(z2) = t2

12,13,14,15 Ti(z1) = t2 ⇒ Ti(z0) = t2 and Ti(z2) = t2
19,20,21,22 Ti(z2) = t1 ⇒ Ti(z0) = t1 and Ti(z1) = t1

The eight response types that survive the elimination process are displayed in the response

matrix below:

R =

s1 s2 s3 s4 s5 s6 s7 s8 t0 t0 t0 t0 t1 t1 t2 t2 Ti(z0)

t0 t0 t1 t1 t1 t1 t1 t2 Ti(z1)

t0 t2 t0 t2 t1 t2 t2 t2 Ti(z2)

The corresponding identification matrix is given by:

H =

s1 s2 s3 s4 s5 s6 s7 s8 3/4 3/4 3/4 3/4 0 0 0 0 t0

0 0 1/3 1/3 1 1 1/3 0 t1

0 1/3 0 1/3 0 1/3 1 1 t2

The entries of the identification matrix show that four counterfactual outcomes are point-identified,

namely, E(Y (t1)|S = s5), E(Y (t1)|S = s6), E(Y (t2)|S = s7), and E(Y (t2)|S = s8).

A.5 Causal Interpretation of Angrist and Imbens (1995) Monotonicity

The main paper shows that response matrix above satisfies the monotonicity condition of Angrist

and Imbens (1995). A celebrated result of Angrist and Imbens (1995) is that the monotonicity

condition delivers a causal interpretation to standard 2SLS estimates. The LATE parameter that

compares two IV-values z, z′ evaluates a weighted average of the per-unit treatment effect among

the compliers that change their choice as the instrument shifts from z to z′.

The general formula for the LATE parameter that compares any two IV-values z, z′ where

Ti(z) ≤ Ti(z
′) is:

LATE(z, z′) =
E(Y |Z = z′)− E(Y |Z = z)

E(T |Z = z′)− E(T |Z = z)
=
∑
t<t′

E(Y (t′)− Y (t)|S ∈ St′(z
′) ∩ St(z))ωt,t′ ,

where ωt,t′ =
P (S ∈ St′(z

′) ∩ St(z))∑
t<t′(t

′ − t) · P (S ∈ St′(z′) ∩ St(z))
, and St(z) = {s ∈ S; s[z] = t}.

The set St(z) comprise the response-types that takes value t when the instrument is set to z. Thus
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St′(z
′) ∩ St(z) is the set of response types that take value t under z and t′ under z′. The weights

ωt,t′ are positive, but do not necessarily sum to one.

The LATE parameter corresponding to IV-values z0, z1 in the choice model given by response

matrix (20) is:

LATE(z1, z0) ≡
E(Y |Z = z0)− E(Y |Z = z1)

E(T |Z = z0)− E(T |Z = z1)

=
E(Y (t2)− Y (t1)|S ∈ {s4, s6})P (S ∈ {s4, s6}) + E(Y (t3)− Y (t1)|S = s8)P (S = s8)

(t2 − t1) · P (S ∈ {s4, s6}) + (t3 − t1) · P (S = s8)
.

If the treatment were to represent schooling years, then the LATE parameter can be interpreted

as a weighted average of the causal effect of one additional year of education on the response types

(s4, s6, s8), which comprise the agents who alter their schooling choice as the instrument shifts.

A.6 Proof of Theorem T.2

The main statement of the theorem is that, under the choice rule (9), supermodular incentives

imply and is implied by OMC.

We first prove that, given choice rule (9), supermodular incentives imply OMC.

Proof. Consider a sequence of IV-values z1, ..., zNZ
and a sequence of treatment choices t1, ...tNT

for which supermodularity holds. We first examine the choices tj+1 versus tj for an IV-change from

zk to zk+1. Let Ti(zk) = tj+1, under supermodular incentives, we have that L[zk+1, tj ]−L[zk, tj ] ≤
L[zk+1, tj+1] − L[zk, tj+1]. Thus, according to the choice rule (9), Ti(zk) ̸= tj . In summary, we

have that Ti(zk) = tj+1 ⇒ Ti(zk+1) ̸= tj . We can extend this rationale to compare choice tj+1

versus tκ for κ = 1, ..., j. This analysis generates the following choice restrictions: Ti(zk) = tj+1 ⇒
Ti(zk+1) /∈ {t1, ..., tj} for all j = 1, ..., NT − 1. Otherwise states, we have that Ti(zk) = tj+1 ⇒
Ti(zk+1) ∈ {tj+1, ..., tNT

} for all j = 1, ..., NT − 1. This statement is equivalent to OMC, which

states that higher ranks of z-values of the counterfactual choice Ti(z) correspond to higher ranks of

treatment choices. In particular, for treatment values t1 < ... < tNT
, the choice restriction implies

Ti(zk) ≤ Ti(zk+1).

Next, we show that for OMC to hold, incentives must be supermodular.

Proof. Consider the IV-values zk, zk+1 and the treatment values tj , tj+1, tj+2. Let the incentive

difference for choice tj between zk+1 and zk+1 be denoted as ∆j = L[zk+1, tj ]−L[zk, tj ]

A.7 Proof of Theorem T.3

We seek to prove that, if the incentive matrix L is binary, then monotonic incentives imply UMC.

Recall that UMC holds if and only if no 2 × 2 submatrix in R that exhibits the prohibit pattern
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which displays a choice t in one of its diagonals while displays no t in the other diagonal. Specifically,

no 2× 2 submatrix in R can take the form:

s s′[ ]
t t′′ Ti(z)
t′ t Ti(z

′)
, (65)

where t, t′, t′′ ∈ T and z, z′ ∈ Z. It is useful to investigate how the prohibit patter (65) in light

of the choice rule (9). Let L′ be the 2×3 submatrix of the binary incentive matrix L corresponding

to rows z, z′ and columns t, t′, t′′.

Consider the first type in (65) s = [t, t′]′. For s to arise it must be the case that Ti(z) = t ⇏
Ti(z

′) ̸= t′ According to the choice rule (9), this lack of choice restriction can only arise when:29

L[z′, t′]−L[z, t′] > L[z′, t]−L[z, t]. (66)

Given that the incentive matrix is binary, this must the be case that:

1. L[z′, t′] > L[z, t′] and L[z′, t] ≤ L[z, t]; or

2. L[z′, t′] ≥ L[z, t′] and L[z′, t] < L[z, t]

Now consider the second type in (65) s; = [t′′, t]′. For s′ to arise it must be the case that

Ti(z
′) = t⇏ Ti(z) ̸= t′′. This lack of choice restriction can only arise when

L[z, t′′]−L[z′, t′′] > L[z, t]−L[z′, t]. (67)

Given that the incentive matrix is binary, this must the be case that:

1. L[z, t′′] > L[z′, t′′] and L[z, t] ≤ L[z′, t]; or

2. L[z, t′′] = L[z′, t′′] and L[z, t] < L[z′, t]

It is clear that the only possibility to generate the prohibit parte in by combining the first item of

the two lists, namely,

L[z′, t′] > L[z, t′], L[z, t′′] > L[z′, t′′], and L[z, t] = L[z′, t].

In other words, the prohibit pattern requires the following pattern of incentives:

1. Incentives for t must be equal L[z, t] = L[z′, t]

2. Incentives for t′ must increase as Z changes from z to z′ : L[z, t′] < L[z′, t′].

3. Incentives for t′′ must decrease as Z changes from z to z′ : L[z, t′′] > L[z′, t′′].

The pattern of incentives for t and t′ violate the monotonic incentive condition, which proves the

theorem.

29Alternatively, one can state that the type only arises when Ti(z
′) = t′ ⇏ Ti(z) ̸= t. According to the choice

rule (9), this lack of choice restriction can only arise when L[z, t]−L[z′, t] > L[z, t′]−L[z′, t′]. It turns out that the
incentive relationship above is equivalent to the incentive relationship in (67).
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A.8 Proof of Theorem T.4

We first seek to prove that t-monotonic incentives (30) implies the monotonicity condition (29). To

do so, it suffices to prove that t-monotonic incentives prevents the advent of the prohibit pattern

in the response matrix R. Specifically, no 2× 2 submatrix in R can take the form:

s s′[ ]
t t′′ Ti(z)
t′ t Ti(z

′)
, (68)

where t, t′, t′′ ∈ T and z, z′ ∈ Z. Consider the IV-values z, z′ ∈ Z. If t-monotonic incentives

hold, there are two cases to consider.

The first case consists the instance where

L[z′, t]−L[z, t] ≤ L[z′, t′]−L[z, t′] ∀ t′ ∈ T \ {t}
holds. According to the choice rule (9), it must be the case that Ti(z) = t⇒ Ti(z

′) ̸= t′∀t′ ∈ T \{t},
which is equivalent to state that Ti(z) = t⇒ Ti(z

′) = t which prevents the prohibit pattern.

The second case is where the following condition holds:

L[z′, t]−L[z, t] ≥ L[z′, t′]−L[z, t′] ∀ t′ ∈ T \ {t}
This condition can be equivalently stated as:

L[z, t]−L[z′, t] ≤ L[z, t′]−L[z′, t′] ∀ t′ ∈ T \ {t}.
Applying the same rationale of the first case, we have that Ti(z

′) = t ⇒ Ti(z) = t which also

prevents the prohibit pattern.

Next we seek to prove that if the monotonicity condition (29) holds, than t-monotonic incen-

tives (30) must be satisfied. For the monotonicity condition (29) to hold, the prohibit pattern (68)

cannot occur. The prohibit pattern requires two conditions to occur:

1. Ti(z) = t must not imply Ti(z
′) = t′ for some t′ ∈ T \ {t}; and

2. Ti(z
′) = t must not imply Ti(z) = t′′ for some t′′ ∈ T \ {t}.

According to the choice rule (9), these two conditions require the following incentive relationships:

1. L[z′, t]−L[z, t] < L[z′, t′]−L[z, t′] for some t′ ∈ T \ {t}, and

2. L[z, t]−L[z′, t] < L[z, t′′]−L[z′, t′′] for some t′′ ∈ T \ {t}.

These conditions imply that the prohibit patters requires the following incentive scheme:

L[z′, t′′]−L[z, t′′] < L[z′, t]−L[z, t] < L[z′, t′]−L[z, t′] for some t′, t′′ ∈ T \ {t}.
Otherwise stated, the prohibit pattern requires that the incentive difference for choice t be strictly

larger than the minimum difference among the choices and strictly smaller than the maximum

difference among the treatment choices. Consequently if the prohibit pattern does not occur, then

it must be the case that:

L[z′, t]−L[z, t] = max
t′∈T

L[z′, t′]−L[z, t′] or L[z′, t]−L[z, t] = min
t′∈T

L[z′, t′]−L[z, t′].

This condition is equivalent to t-monotonic incentives (30).
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A.9 Examples of Incentive IV Models where UMC Holds

A.10 Proof of Theorem C.3

A.11 Proof of Theorem T.5

A.12 Proof of Theorem T.6

A.13 Doubly Robust Estimation Algorithm for Response-type Probabilities

Step 1. Partition the sample index I = {1, . . . , n} into K subsets such that ∪K
k=1{Ik} = I, where

the number of partitions K is commonly fixed to five. Let Ic
k = I \ Ik be the complement of Ik

Step 2. For each value t ∈ {1, 2, 3} and each partition k, compute the estimator γ̂t,k,s associated

with the kappa function κs(t, Z,X) by minimizing the following expression:

γ̂s,t,k ∈ arg min
γ∈Rp

∑
i∈Ic

k

1

2
(h(Zi, Xi)

′γ)2 +
∑
z∈Z

νs(t, z)h(z,Xi)
′γ

+ αγ∥γ∥1, (69)

where γ̂s,t,k is evaluated using all data that is not in Ik, while αγ is the penalty parameter

determined by a cross-validation procedure employing all sampling data.

Step 3. For each value t ∈ {1, 2, 3} and each partition Ik, compute the estimator β̂t,k associated

with the propensity score P (T = t|Z,X) via the least absolute shrinkage and selection operator

(lasso) procedure that minimizes the following expression:

β̂t,k ∈ arg min
β∈Rp

∑
i∈Ic

k

(1[Ti = t]− h(Zi, Xi)
′β)2 + αβ∥β∥1,

where αβ is the penalty parameter also determined by via cross-validation procedure.30

Step 4. Given γ̂s,t,k and β̂t,k, we compute the orthogonal score estimator ψ̂s,i,k for each participant

i ∈ Ik and for each partition k :

ψ̂s,k,i ≡
∑
t∈T

h(Zi, Xi)
′γ̂s,t,k ·

(
1[Ti = t]− h(Zi, Xi)

′β̂t,k

)
+
∑
z∈Z

νs(t, z)h(z,Xi)
′β̂t,k

 .

Step 5. The estimator for the propensity score P (S = s) is the average of the orthogonal scores

within partition, that is, ψ̂s,k = |Ik|−1
∑

i∈Ik
∑

t∈T ψ̂s,k,i. The final estimate is the average of the

orthogonal scores across partitions, namely, ψ̂s = n−1
∑K

k=1 ψ̂s,k · |Ik|.

Step 6. Inference is performed via the bootstrap multiplier method. For each partition k, we draw

B samples {W (b)
i }i∈Ik of i.i.d. standard normals to compute:

ψ̂
(b)
s,k = ψ̂s,k +

1

n

n∑
i∈Ik

W
(b)
i

(
ψ̂s,k,i − ψ̂s,k

)
, and ψ̂

(b)
s = n−1

K∑
k=1

ψ̂
(b)
s,k · |Ik|.

30Note that the penalty parameters αβ and αγ do not need to be the same, but the functions h(Z,X) are the same
in steps 2 and 3.
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We use the distribution of ψ̂
(b)
s to compute the standard error of the estimator for the type proba-

bility.

A few notes on the estimation method are in order. The sample splitting in Step 1 is not

necessary to secure normality of the estimator and can be voided. The estimators in Steps 2 and

3 allow for some degree of flexibility. In our setup, (Z,X)′β̂t,k estimates the propensity score

and h(Z,X)′γ̂s,t,k estimates the kappa function. These estimates can be obtained by suitable

alternative machine learning estimators. For instance, it is possible to transform the minimization

that evaluates γ̂s,t,k in Step 2 into a standard lasso-type estimator.

Let Hk(z) ≡ h(z,X) denotes the |Ic
k| × p matrices that stack h(z,Xi)

′ across participants

i ∈ Ic
k. In the same token, let Hk ≡ h(Z,X) be the matrix that stakes h(Zi, Xi)

′ across i ∈ Ic
k,

and let ιk be the |Ic
k|-dimensional vector of ones. In this notation, the minimization of Step 2 can

be equivalently expressed as:31

γ̂s,t,k ∈ arg min
γ∈Rp

∑
i∈Ic

k

(h(Zi, Xi)
′θ − h(Zi, Xi)

′γ)2 + αγ∥γ∥1, where θ ≡ (H ′
kHk)

−1

∑
z∈Z

νs(t, z)Hk(z)
′ιk

 .

The term h(Zi, Xi)
′θ can be roughly understood as the projection of the function

∑
z∈Z νs(t, z)h(z,Xi)

into the space generated by h(Zi, Xi). Finally, we use the leave-one-out sampling scheme in all

cross-validation methods.

A.14 Doubly Robust Estimation Algorithm for Identified Counterfactual Out-

comes

Step 1. Partition I into ∪K
k=1{Ik} = I, where Ic

k = I \ Ik.

Step 2. For each k, compute the estimator γ̂t,k,s as:

γ̂s,t,k ∈ arg min
γ∈Rp

∑
i∈Ic

k

1

2
(h(Zi, Xi)

′γ)2 +
∑
z∈Z

νs,t(z)h(z,Xi)
′γ

+ αγ∥γ∥1, (70)

where αγ is the penalty parameter determined by a cross-validation (leave-one-out) procedure.

Step 3. For each partition k, compute the estimators β̂t,k, and θ̂t,k via lasso:

θ̂t,k ∈ arg min
θ∈Rp

∑
i∈Ic

k

(
Y · 1[Ti = t]− h(Zi, Xi

)′
θ)2 + αθ∥θ∥1,

β̂t,k ∈ arg min
β∈Rp

∑
i∈Ic

k

(
1[Ti = t]− h(Zi, Xi

)′
β)2 + αβ∥β∥1,

where αβ, αθ are the penalty parameters determined by cross-validation.

Step 4. Given γ̂s,t,k, β̂t,k, and θ̂t,k, for each agent i ∈ Ik and each partition k, compute the

31The estimator is numerically equivalent to evaluating the minimum of the function in Step 2. The equivalence is
easy be shown when expressing the minimization using matrix notation.
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orthogonal score ψ̂s,i,k for P (S = s) and φ̂s,i,k for E(Y 1[S = s])

ψ̂s,k,i ≡

h(Zi, Xi)
′γ̂s,t,k ·

(
1[Ti = t]− h(Zi, Xi)

′β̂t,k

)
+
∑
z∈Z

νs(t, z)h(z,Xi)
′β̂t,k

 ,

φ̂s,k,i ≡

h(Zi, Xi)
′γ̂s,t,k ·

(
Y · 1[Ti = t]− h(Zi, Xi)

′θ̂t,k

)
+
∑
z∈Z

νs(t, z)h(z,Xi)
′θ̂t,k

 .

Step 5. The estimator for P (S = s) is the average of the orthogonal scores ψ̂s = n−1
∑K

k=1 ψ̂s,k ·
|Ik|, where ψ̂s,k = |Ik|−1

∑
i∈Ik

∑
t∈T ψ̂s,k,i. The estimator for E(Y (t)1[S = s]) is also the average

of the orthogonal scores φ̂s = n−1
∑K

k=1 φ̂s,k · |Ik|, where φ̂s,k = |Ik|−1
∑

i∈Ik
∑

t∈T φ̂s,k,i. The final

estimator for E(Y (t)|S = s) is the ratio φ̂s/ψ̂s.

Step 6. Our inference uses a multiplier bootstrap that draw B samples {W (b)
i }i∈Ik of i.i.d. standard

normals for each partition k. We then compute both scores:

ψ̂
(b)
s,k = ψ̂s,k +

1

n

n∑
i∈Ik

W
(b)
i

(
ψ̂s,k,i − ψ̂s,k

)
, and ψ̂(b)

s = n−1
K∑

k=1

ψ̂
(b)
s,k · |Ik|,

φ̂
(b)
s,k = φ̂s,k +

1

n

n∑
i∈Ik

W
(b)
i

(
φ̂s,k,i − φ̂s,k

)
, and φ̂(b)

s = n−1
K∑

k=1

φ̂
(b)
s,k · |Ik|.

We use the joint distribution {ψ̂(b)
s , φ̂

(b)
s }Bb=1 to estimate the variance matrix of the orthogonal

scores denoted by V̂ (ψ̂s, φ̂s). We compute the standard error for the ratio φ̂s/ψ̂s using the Delta

method, namely, σ̂ =
(
n−1ω′V̂ (ψ̂s, φ̂s)ω

)1/2
where ω = [−(φ̂s/ψ̂

2
s), 1/ψ̂s]

′.

The steps above differ from the estimation of type probabilities in a few instances. Step 2 uses

the function νs,t(Z) instead of νs(T,Z). Steps 3 computes an additional parameter θ while Step 4

computes two orthogonal scores. Steps 5 states that our estimator is a ratio of orthogonal scores

means and Step 6 uses bootstrap and the delta method to evaluate the standard error of the ratio.

A.15 Doubly Robust Estimation Algorithm for Counterfactuals Using Com-

parison Compliers

We first consider the task of evaluating E(Y (1)|S = s12). Steps 1, 5 and 6 of the previous procedure

remain the same. Steps 2–4 are modified as following.

Step 2’. For each k, compute the estimator γ̂t,k,s as:

γ̂1,k ∈ arg min
γ∈Rp

∑
i∈Ic

k

(
1

2
(h(Zi, Xi)

′γ)2 +−(h(1, Xi)
′ − h(0, Xi))

′γ

)
+ αγ∥γ∥1. (71)

Step 3’. For each partition k, compute the parameters β̂1,k, β̂2,k, θ̂1,k, π̂1,k, and π̂2,k, via the
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following lasso estimations:

θ̂1,k ∈ arg min
θ∈Rp

∑
i∈Ic

k

(
Y · 1[Ti = 1]− h(Zi, Xi

)′
θ)2 + αθ∥θ∥1,

β̂1,k ∈ arg min
β∈Rp

∑
i∈Ic

k

(
1[Ti = 1]− h(Zi, Xi

)′
β)2 + αβ,1∥β∥1,

β̂2,k ∈ arg min
β∈Rp

∑
i∈Ic

k

(
1[Ti = 2]− h(Zi, Xi

)′
β)2 + αβ,2∥β∥1,

π̂1,k ∈ arg min
π∈Rp

∑
i∈Ic

k

(
1[Ti = 1]h(Zi, Xi

)′
γ̂1,k − g(Xi

)′
π)2 + απ,1∥π∥1,

π̂2,k ∈ arg min
π∈Rp

∑
i∈Ic

k

(
1[Ti = 2]h(Zi, Xi

)′
γ̂1,k − f(Xi

)′
π)2 + απ,2∥π∥1,

where f(X) ≡ (f1(X), . . . , fq(X))′ denote a q-dimensional vector of functions of baseline variable.

Step 4’. Given γ̂s,t,k, β̂t,k, and θ̂t,k, we can compute the orthogonal score ψ̂s,i,k regarding P (S =

s21) for each agent i ∈ Ik and each partition k :

ψ̂s,k,i ≡
(
h(Zi, Xi)

′γ̂s,t,k ·
(
1[Ti = 2]− h(Zi, Xi)

′β̂t,k

)
+ h(1, Xi)

′ − h(0, Xi)
′β̂t,k

)
.

The orthogonal score for E(Y (1)1[S = s21]) is cumbersome. We define the following terms

to facilitate notation: Θi ≡ h(Zi, Xi

)′
θ̂1,k, Λ1,i ≡ h(Zi, Xi

)′
β̂1,k, Λ2,i ≡ h(Zi, Xi

)′
β̂2,k, ∆i ≡

h(0, Xi)
′−h(1, Xi), κi ≡ h(Zi, Xi

)′
γ̂1,k. Ui ≡ f(Xi)

′π̂1,k, and Ci ≡ f(Xi)
′π̂2,k/Ui. In this notation,

we can define the orthogonal score for E(Y (1)1[S = s21]) associated to agent i ∈ Ik and each

partition k as:

φ̂s,k,i ≡ ((Yi. ∗ 1[Ti = 1]−Θi)κi + (∆iΘi))Ci − (((1[Ti = 2]− Λ2,i)κi) · (∆iΘi))
1

Ui

− (((1[Ti = 1]− Λ1,i)κi) · (∆iΘi))
C

Ui
− (((∆iΛ2,i)) · (∆iΘi))

1

Ui
− (((∆iΛ1,i)) · (∆iΘi))

C

Ui
.

As mentioned, the Steps 5–6 remains the same. This estimator evaluates E(Y (1)|S = s12) which

enable us to estimate the causal effect E(Y (2)− Y (1)|S = s12) since E(Y (2)|S = s12) was already

estimated. The standard error of the causal effect is obtained via the multiplier bootstrap. The

counterfactual outcome E(Y (1)|S = s13) is obtained by replacing the choice 2 in Steps 3’ and Step

4’ by the treatment choice 3.
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