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Abstract

Noncompliance is a pervasive problem in social experiments which hinges the identification
of causal effects. This paper offers a framework in which noncompliance is not portrayed as
a drawback, but a key ingredient of identification analysis. The method uses revealed prefer-
ence analysis to exploit the incentives generated by the design of social experiments in order
to nonparametrically identify causal parameters. The framework is used to evaluate the Mov-
ing to Opportunity, the largest housing experiment in the US. Moving to Opportunity was
designed to investigate the casual effect of relocating disadvantaged families from high-poverty
neighborhoods to low-poverty communities. Substantial noncompliance prevents the evaluation
of neighborhood effects, that is the causal effect of residing in different neighborhoods types.
Nevertheless, noncompliance still allows for the evaluation of voucher effects, that is the causal
effect of being offered a voucher. Previous literature shows that voucher effects on labor mar-
ket outcomes are not statistically significant. This paper exploits the incentives of the MTO
intervention to identify neighborhood effects. It shows that neighborhood effects are statisti-
cally significant even though voucher effects aren’t. The result reconciles MTO with a growing
literature attesting the impact of neighborhood quality on economic well-being. The framework
can be broadly applied to exploit economic incentives in multiple choice models with heteroge-
neous agents and categorical instrumental variables. I show it is possible to evaluate all causal
parameters using 2SLS regressions using particular transformations of the observed data.
Keywords: Moving to Opportunity, Randomization, Selection Bias, Social Experiment; Causal
Inference.
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1 Introduction

Randomized Control Trials (RCTs) were formalized by Sir Ronald Fisher (1890-1962) and are
often considered the gold standard for evaluating causal effects in social experiments. Fisher (1935)
worked originally in agricultural experiments. He explains that perfectly implemented RCTs enable
the evaluation of average treatment effects, but experiments that depart from its original random
assignments lead to bias and inaccurate interpretation of data: “If the design of the experiment is
faulty, any method of interpretation that makes it out to be decisive must be faulty too.”
Unfortunately, perfectly implemented RCTs are rare in social experiments. Most experiments
suffer from some degree of noncompliance, when agents choose to depart from its original treatment

' Noncompliance induces selection bias which prevents the evaluation of the causal

assignments.
effects intended by the RCT. Faced by this caveat, experimental economists seek strategies to
prevent noncompliance while econometricians have developed statistical methods to correct for it.
These efforts share the mindset that the original assignments of the RCT is a desirable benchmark
and deviations from it ought to be avoided. This paper reverts this mindset by exploring a simple
insight: while a departure from random assignments in an agricultural experiment is a failure of
the experiment, a departure from random assignments in a social experiment is realisation of a
rational choice and thereby a useful source of information.

This paper offers a framework that merges experimental design with classical economic behavior.
The method enables researchers to exploit the information on the incentives induced by the design
of a social experiment to identify causal effects. It uses a simple economic model that employs
revealed preference analysis to characterize the set of counterfactual choices that are economically
justified. The economic model is then embedded into a casual model suitable to the study of
treatment effects. Depending on the design of incentives, noncompliance is not perceived as an
econometric problem, but an essential tool for the identification of causal effects.

The method is used to evaluate the Moving to Opportunity (MTO) Intervention, the most
influential housing experiment in the US. As of 2018, the US spends over $ 45 billion on Housing
and Urban Development. About half of this budget is used to finance the Section 8 Program, a
policy that offers house-subsidizing vouchers to five million people and enables over two million
low-income families to move from poor neighborhoods to better ones (Chetty et al., 2016).

The Moving to Opportunity targeted over 4,000 households living in high-poverty housing
projects across five U.S. cities during the years of 1994 to 1997. It was designed to investigate the
casual effect of relocating disadvantaged families from high-poverty neighborhoods to low-poverty
communities (Orr et al., 2003). Families were randomly assigned into three groups: experimen-
tal, which granted a rent-subsidizing voucher that incentivized families to relocate from the high-

poverty neighborhoods targeted by the intervention to low-poverty neighborhoods,?, Section 8,

!Examples of works that describe the problem of noncompliance in social experiments on early childhood education
are: Conti, Heckman, and Pinto (2016) (Abecedarian project), Feller et al. (2014); Kline and Walters (2016) (Head
Start), Yazejian and Bryant (2012) (Educare program), Heckman et al. (2010, 2013) (Perry Program).

2Low-poverty neighborhoods are defined as those whose share of poor residents is below 10% according to the



whose voucher incentivized relocation to either low or medium poverty neighborhoods,? and con-
trol, which had no voucher. The experiment did not enforce relocation and MTO noncompliance
was substantial, but not unusual. Nearly 50% of experimental families did not use the voucher to
relocate while 21% of control families living in high-poverty neighborhoods relocated to low-poverty
areas.

It is useful to distinguish neighborhood effects, the causal effect of residing in different neighbor-
hoods types, from voucher effects, that is the causal effect of being offered a voucher. Noncompliance
induces selection bias that hinges the evaluation of neighborhood effects. Families who comply with
the voucher incentives differ from those who don’t. Noncompliance still enables the evaluation of
voucher effects such as the intention-to-treat and the treatment-on-the-treated.® Voucher effects
quantify the impact of the housing policy itself and have been evaluated by a prominent MTO
literature (Gennetian et al., 2012; Hanratty et al., 2003; Katz et al., 2001, 2003; Kling et al., 2007,
2005; Ladd and Ludwig, 2003; Leventhal and Brooks-Gunn, 2003; Ludwig et al., 2005, 2001).

This paper adds to MTO literature by addressing a long-standing question: how to exploit the
random assignments of vouchers to identify neighborhood effects instead of voucher effects?” It
moves beyond voucher effects by exploiting the information on the incentives induced by the MTO
experiment.

I devise two matrices that play a primary role in this analysis: the incentive matriz and the
response matriz. The incentive matrix (Table 1) encodes the incentives associated with the design
of the experiment. Revealed preference analysis translates incentives into choice restrictions. Those
restrictions generate the response matrix (Table 2), which conveniently describes the counterfactual
choices that MTO families may take. The response matrix contains all the necessary information to
examine the nonparametric identification of causal parameters. It also enables to express voucher

effects in terms of neighborhood effects.
The contributions of this paper are of two types: empirical contributions to the MTO literature

and theoretical contributions to the literature on policy evaluation. On the empirical realm, this
paper shows that neighborhood effects on adult labor market outcomes are statistically significant
even though voucher effects aren’t. The causal effects of moving from a high-poverty neighborhoods
to low-poverty neighborhoods for families that respond to voucher incentives are: 14% increase in
income, a 20% increase in employment and an increase of 38% on the likelihood of breaking out of
poverty. Moreover, greater gaps in neighborhood poverty levels correspond to larger causal effects.
This result reconciles MTO with a recent literature that attests the influence of neighborhood
quality in the economic well-being of its residents (Aliprantis and Richter, 2014; Chetty et al.,
2017, 2016; Chyn, 2016). I also evaluate the share of the families that belong to each of the

1990 sensus Orr et al. (2003).

3Medium-poverty neighborhoods are defined by exclusion. Those are the neighborhoods that are not the high-
poverty neighborhoods targeted by the intervention nor the ones classified as low-poverty neighborhoods.

“Intention-to-treat is the outcome difference-in-mean between voucher assignments while treatment-on-the-treated
is the intention-to-treat divided by the voucher compliance rate. See Appendix B for a detailed discussion.

®See Clampet-Lundquist and Massey (2008); Ludwig et al. (2008); Sampson (2008) for a debate whether neigh-
borhood effects can be assessed from voucher effects.



Table 1: MTO Incentive Matrix

Group Choices: Neighborhood Poverty Level
Assignment High (t5,) Medium (¢,,) Low (¢;)
Control (z.) 0 0 0

Section 8 (zs) 0 1 1
Experimental (z.) 0 0 1

This table summarizes the incentives of the MTO vouchers (rows) associated with each neighborhood type (columns). Control
families (z.) received no voucher and its incentives are indicated by the elements zero in the first row of the incentive matrix.
The Section 8 voucher (zg) incentivizes relocation to either medium (¢,) or low-poverty (¢;) neighborhoods as indicated by
two elements one in the second row. The experimental voucher (z.) incentivizes low-poverty (¢;) neighborhood relocation as

indicated the element one in the last row of the incentive matrix.

response-types S, ..., 87 in Table 2 and the expected value of family pre-program variables for each
response-type. These analyses are particularly useful in designing more efficient interventions.

On the theoretical realm, this paper provides a range of identification and estimation results that
apply to any social experiment characterised by Monotonic Incentives (Pinto, 2016). These consist
of experimental designs in which a change in the instrument (i.e. vouchers) induces changes in
incentives toward the same direction for all choices. Otherwise stated, a change in the instrument
that increases incentives for a choice t cannot decrease incentives for another choice t’. MTO
complies with this criteria: as the voucher ranges along z. — z. — 23, the incentives in Table 1 are
weakly increasing for all neighborhood choices.

Monotonic incentives attributes a useful decomposition and four non-trivial properties to the re-
sponse matrix. These features render a range of identification and estimation results. For instance,
I present general close-form solutions for the nonparametric identification of counterfactual out-
comes and show that each counterfactual outcome can be estimated by a Two-stage Least Square
(2SLS) regression using particular transformations of the observed data. Monotonic incentives also
imply the unordered monotonicity criteria of Heckman and Pinto (2018). The criteria is used to
develop a specification test on model assumptions. Unordered monotonicity also entails a sepa-
rability condition that is used to extend the method of Local Instrumental Variables of Heckman
and Vytlacil (1999) for the case of multiple choices. This extension is used to address a problem
of partial identification of counterfactual outcomes that is common in multiple choice models with
discrete instruments.

This paper proceeds as follows. Section 2 explains the identification problem in MTO. Section 3
describes the MTO intervention. Section 4 uses a simple economic model to characterize neighbor-
hood choices in MTO. The section combines the MTO experimental design and revealed preference
analysis to generate the response matrix. Section 5 is devoted to the study of the response matrix
properties. All identification results and estimation methods stem from these properties. Section 6

exploits unordered monotonicity to assess model assumptions. Section 7 merges the economic model



Table 2: MTO Response Matrix

Group Counterfactual | Economically Justifiable Response-types
Assignment Choices 81 82 83 84 85 Sg S7
Control (z.) Tow(ze) th tm U th th tm th
Section 8 (zg) T.(zs3) th tm t tm t tm tm
Experimental (z) To(ze) th tm t ot ot Y th

Each column of the MTO response matrix displays a response-type, which is the unobserved 3-dimensional vector of
counterfactual choices Sy, = [T.(2¢), T (28), Tw(2e)]” that a family w would take if it were assigned to control (z.),
Section 8 (z3), and experimental (z.) vouchers respectively. The response matrix consists of seven response-types
81,...,87. Response-type s1 = [tn, tn, ts]’, corresponds to families that choose high-poverty neighborhoods
regardless of the voucher assignment. Families of type s2 and s3 always choose medium and low-poverty
neighborhoods respectively. Families of response-type s4 = [tn, tm, ]’ choose high, medium and low-poverty
neighborhoods when assigned to control, Section 8, and experimental vouchers respectively. ss-families choose a
low-poverty neighborhood whenever subsidy is available but remain in high-poverty areas otherwise; sg-families
choose a low-poverty neighborhood if the available subsidy applies only for this neighborhood type, and choose
medium-poverty otherwise; s7-families chose a medium-poverty neighborhood if subsidy is available and remain in
high-poverty neighborhoods otherwise.

into a causal model that is suitable to investigate the identification of causal effects. Section 7.1
presents general identification results for social experiments characterized by monotonic incentives.
Section 7.2 expresses the treatment-on-the-treated parameter in terms of neighborhood effects. Sec-
tion 8 shows that counterfactual outcome means can be estimated by standard Two-Stage Least
Squares upon a suitable data transformation. Section 9 addresses the problem of partial identifica-
tion of counterfactual outcomes. Section 10 summarizes the theoretical contributions. Section 11

presents empirical results and Section 12 concludes.

2 Understanding the MTO Identification Problem

I use a familiar binary choice model of to introduce the MTO identification problem. Consider a
simplification of MTO design in which families choose between a low-poverty neighborhood (t;) or
a high-poverty neighborhood (¢;,) and are randomly assigned to two groups: a control group (z.)
that does not grant vouchers and an experimental group (z.) that awards a rent-subsiding voucher
that applies to dwellings in low-poverty neighborhoods. Let T, € {t;,¢,} denotes the neighborhood
choice of family w, Z,, € {z, z.} denotes the group assignment that plays the role of an instrumental
variable and T},(z) be the counterfactual (potential) choice that family w would choose if it were
assigned to a voucher z € {z, z.}.

The response variable S, = [Ti,(z.) , T,,(ze)]" is the unobserved two-dimensional vector of
counterfactual choices of family w if assigned to z. and z., respectively. Vector S, can take four

values termed response-types. Angrist, Imbens, and Rubin (1996) name these response-types as:



never takers S, = [ty,ts], compliers S, = [ty, 1], always takers S, = [t;,;]’, and defiers S, =
[t1, tn)" as in Table 3 below.

Table 3: Possible Response-types for the Binary Neighborhood Choice with Binary Voucher

Response-types

Voucher Counterfactual Never Always
Assignment Choices Takers Compliers Takers Defiers
Control (z.) To(2c) th th t t;
Experimental (z.c) To(ze) t, t t th,

Response variable ‘ S, = [tn,tn] Sw=1[th,t1] Sw=1[t,t1] Sw=[ti,tr]

Voucher z, incentivizes low-poverty neighborhood relocation while z. does not. Thus it is
intuitive to assume that the instrument change from z. to z. may influence family choices towards
only low-poverty neighborhood (¢;). This choice behavior is termed monotonicity by Imbens and
Angrist (1994) and can be equivalently declared as either a choice inequality or a choice restriction:

1T, (ze) =) <1[Tu(ze) =t = To(ze) =t = Tiu(ze) = t; for all families w, (1)

Choice Inequality Choice Restriction
The choice inequality in (1) uses an indicator function 1] -] to state that the instrument change

ze — 2. induces families to choose low-poverty neighborhoods t;. The choice restriction in (1)
employs an implication and states that if a family w chooses ¢; under voucher z. then it must
be the case that family w also chooses t; under z.. Both expressions capture the notion that
the impact of incentives is coherent across all families. The monotonicity criteria (1) eliminates
the defiers of Table 3. This elimination enables the identification the Local Average Treatment
Effect (LATE), that is the causal effect of low versus high-poverty neighborhood for compliers:
E(Y(t;)) = Y(tp)|S = [tn,t1))'), where Y (¢;),Y (tr) denotes counterfactual outcomes when choice is
fixed at ¢; and ty,.

that is

MTO differs from the binary LATE model of Table 3 as vouchers may take three values —
control (z.), experimental (z.), or Section 8 (zg) — and families decide among three choices — high
(tn), medium (t,,) or low-poverty (t;) neighborhoods. Let Z, € {z,zs, 2.} denotes the voucher
assignment of family w which plays the role of an instrumental variable and T,, € {tp,tm,t;} be
neighborhood choice of family w. The response variable S, = [T,,(2¢) , Tw(2s) , Tw(2e)]" is the
unobserved three-dimensional vector of counterfactual choices T,,(z) that family w would choose if
assigned to z., zs and z. respectively. S,, = [ts , tim , t;]’ means that family w chooses high-poverty
neighborhood if assigned to control (7;,(z.) = t5,), medium-poverty under Section 8 (7;,(z3) = tim),

and low-poverty under the experimental voucher (T, (z.) = t;).°

Remark 2.1. While the number of possible response-types in the binary LATE model of Table 3 is
4, the total number of possible response-types in MTO is 27. If family w were assigned to the control

S1f all families were of this response-type, then the comparison between experimental and control families would
identify the causal effect of low-poverty versus high-poverty neighborhoods on the outcome.



group, the family could choose either one of the three neighborhood types, i.e., T,,(z.) € {tn,tm,ti1}. If
family w were assigned to Section 8, the family may also choose among the three neighborhood types,
i.e., Tiy(28) € {tn,tm,t1}. The combination of these possibilities generates 3x3 = 9 possible patterns.
Under the experimental voucher, family w still has three possible choices T,,(ze) € {tn,tm,t;}. Thus
the number of possible response-types that the response vector S, = [Ti,(zc), Tw(2s), Tw(2s)], can
take totals 3 x 3 x 3 = 27. The 27 possible response-types in MTO are presented in Panel A of
Table 7. The identification of causal parameters depends on the elimination of some response-types
in the same fashion that the monotonicity assumption (1) eliminates defiers in the binary LATE
model.

I exploit the information on the incentives induced by the experimental design of MTO to
eliminate response-types. Table 1 explains that the experimental voucher (z.) incentivizes the
choice of low-poverty neighborhood (¢;), Section 8 (zg) incentivizes both low and medium-poverty
neighborhoods (¢, t,,) while the control group z. has no incentives. Remark 2.2 investigates two

response-types in light of MTO incentives.

Remark 2.2. MTO incentives imply that some response-types are unlikely. Consider the response-
type Sy = [th, ti, tn)" which means that family w chooses a low-poverty neighborhood under Section
8 (T,(z8) = t1) but switches to a high-poverty under the experimental voucher (T,(ze) = tp).
The switch is incoherent as both vouchers subsidize low-poverty neighborhood. Another unlikely
response-type is S, = [tm, tm, tr]’, in which family w chooses a high-poverty neighborhood under the
experimental voucher (T,,(ze) = tr), but switches to medium-poverty under no voucher (1,,(z.) =
tm). The switch lacks justification as these vouchers (ze, z.) do not subsidize neither high (ty) nor
medium-poverty (t,,) neighborhoods.

Response-types could be systematically eliminated by extending the monotonicity assump-
tion (1) to the multiple choices of MTO. To do so, we can use the incentive matrix (Table 1)
to examine the choice incentives induced by changes in instrumental values. There are three possi-
bilities: (1) the change z. — z. induces families to choose low-poverty (¢;) neighborhoods; (2) the
change z. — zg induces families to choose low (¢;) or medium-poverty (¢,,) neighborhoods; (3) the
change z. — zg induces families to choose medium-poverty (t,,) neighborhoods; These incentives

are translated into the three monotonicity criteria of Table 4.

Table 4: Monotonicity Argument : Choice Inequalities and Equivalent Choice Restrictions

‘ Choice Inequalities Equivalent Choice Restrictions
Monotonicity Criteria 1 1T, (2z.) = ;) < 1[T,(z.) = t]] To(z) =t = T,(z) =1
Monotonicity Criteria 2 | 1[T,,(2¢) € {tm,ti}] < 1[Tw(2s) € {tm,t1}]  Tw(ze) #th = To(zs) #tn
Monotonicity Criteria 3 1T, (2e) = tm] < 1[T,(28) = tm] To(ze) =tm = Tu(28) =tm

First row of Table 4 states that if a family chooses a low-poverty neighborhood under control
(Tw(ze) = t;) then it must chooses low-poverty neighborhood under the experimental voucher
T, (ze) = t;. This monotonicity criteria eliminates all the six response-types in which T},(z.) =
but T, (ze) # t1, namely, [t;, tm, th]’, [t1, th, th], [t ti, th)” and [t tm, )’ [t thy tm]’s [t t, t)’- Panel

B of Table 7 lists the response-types that are eliminated by each monotonicity criteria of Table 4.



Overall, the three monotonicity criteria in Table 4 eliminate 13 out of 27 possible response-types.
Unfortunately, this elimination is insufficient to render the identification of causal parameters.

I make the case that revealed preference analysis is more powerful and intuitive than monotonic-
ity criteria of Table 4. For instance, the monotonicity criteria of Table 4 are not able to eliminate
the response-types discussed in Remark 2.2. Nevertheless those response-types can be eliminated
by a simple revealed preference argument. Consider response-type [ty,, tm, t5]". If family w chooses a
medium-poverty neighborhood under no voucher (7,,(z.) = t,,). This means that medium-poverty
is revealed preferred to high-poverty neighborhoods under no subsidy. The experimental voucher
does not subsidize high-poverty neighborhoods. Thus, by the Weak Axiom of Revealed Prefer-
ence(WARP), high-poverty neighborhood cannot be revealed preferred to medium-poverty under
the experimental voucher. To summarize, MTO incentives combined with WARP generates the
choice restriction T,,(z.) = t;, = T.,(2¢) # t; which eliminates the response-type [tm,tm,ts]" of
Remark 2.2.

In Section 4, I use a simple economic choice model to examine the incentives induced by the
design of an experiment. I use choice axioms commonly evoked in economics to translate the
incentive matrix into choice restrictions that eliminate response-types. 1 show that the MTO
incentive matrix generates seven choice restrictions that subsume the three monotonicity criteria
of Table 4. These choice restrictions eliminate 20 out of 27 response-types. The seven response-
types that survive this elimination process constitute the response matrix displayed in Table 2. All

identification results stem from the properties of this response matrix.

3 The MTO Experiment: Data and Design

MTO is a housing experiment that targeted poor families living in high-poverty housing projects
across five U.S. cities — Baltimore, Boston, Chicago, Los Angeles, and New York — between June
1994 and July 1998. The MTO sample totals 4, 248 disadvantaged families, two-thirds of whom were
African-American, three-quarters were on welfare, 92% of the households were headed by a female
and less than 50% of those completed high school. I refer to Orr et al. (2003); Sanbonmatsu et al.
(2011) for an detailed description of the experiment. Appendix C presents statistical description
of selected variables of the MTO intervention regarding neighborhood choice, poverty levels and
voucher compliance.

Families were randomly allocated into three groups: 28% to the Section 8 group (zg), 41% to the
experimental group (z.) and 31% to control (z.). Section 8 families were offered a rent-subsidizing
voucher that could be used if a family agreed to relocate from the original housing projects to eligible
private-market dwellings. Experimental families were offered a voucher similar to the Section 8
voucher but could be used only in low-poverty neighborhoods. Experimental families also received
some counseling from local nonprofit organizations to search for houses. Control families were
offered no voucher.

Neighborhood choices are defined in accordance to the MTO design. This enables to clearly



determine the incentives generated by each voucher. As mentioned, families decide among three
neighborhood options: (1) high-poverty t5; (2) medium-poverty t,,; or (3) low-poverty ¢;. High-
poverty neighborhoods consist of the high-poverty housing projects targeted at the intervention
onset. The choice of high-poverty neighborhood is equivalent to not relocating. Low-poverty
neighborhoods comprise the ones targeted by the experimental voucher, those whose fraction of
poor residents is below 10% according to the 1990 US Census. Medium-poverty neighborhoods
are defined by exclusion, the ones other than the housing projects targeted by MTO and whose
fraction of poor residents is above 10% according to the 1990 US Census. Appendix C.1 presents
the distribution of neighborhood poverty levels by voucher assignment and by voucher compliance.
Appendix C.2 provides additional information on neighborhood choices.

Figure 1 summarizes the relocation patterns of MTO families. A sizeable share of families did
not use the voucher to relocate. The compliance rate for the experimental voucher was 47% while

the compliance rate for the Section 8 voucher was 59 %. Table A.5 presents compliance rates by

site.
Table 5: Compliance Rates by Site
Site ‘ All Sites Baltimore Boston Chicago Los Angeles New York
Experimental Compliance Rate 47 % 58 % 46 % 34 % 67 % 45%

Section 8 Compliance Rate 59 % 72 % 48 % 66 % 7T % 49%

This tables presents the fraction of voucher recipients that used the voucher (compliance rate) to relocate by site.

A baseline survey was conducted at the onset of the intervention. An impact interim evaluation
conducted in 2002 (four to seven years after enrollment) collected data on employment, household
income and public assistance.”

Table 6 describes these baseline variables prior to neighborhood decision. Columns 2-6 shows
that variables are reasonably balanced across the voucher assignments apart some sampling varia-
tions. The remaining columns show evidence of selection bias regarding voucher usage. Columns
7-9 compare the baseline variables for experimental families that used and did not use the voucher.
Columns 10-12 present a similar analysis for Section 8 families.

Columns 10-12 of Table 6 shows that families who complied with the Section 8 voucher differ
from those who did not. Families who used the voucher were smaller, had fewer teenage siblings,
fewer years of residency, were more likely to feel unsafe and more likely to be victimized in the
neighborhood. In the same token, Columns 7-9 of Table 6 shows that families who complied with
the experimental voucher differ from those who did not. Families who used the voucher had fewer
social connections. Those were less likely to chat with neighbors, have family in the neighborhood

or watch for neighborhood children.

"See Gennetian et al. (2012); Orr et al. (2003) for detailed descriptions of the intervention and the available data.
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4 From Incentives to Counterfactual Choices

This section describes the steps that yield the MTO response matrix in Table 2. The matrix arises
by using revealed preferences to analyze the incentives of the MTO intervention.

The incentives induced by the design of the MTO intervention can be are characterized by the
incentive matrix L in (2) which displays a ranking of choice incentives (columns) across voucher
assignments (rows). Let L[z,t] denotes the value of L for instrumental value (i.e. vouchers)
z € {zc, 28,2} and choice t € {t;,t;m,tn}. Thus L[z,t] < L[2',t] means that the incentive for
choice t increases when instrument changes from z to z’. The incentive matrix is ordinal, any
strictly increasing transformation of the values in L characterizes equivalent incentives and delivers

identical analysis.

th, tm 1
0 Of =z
L= [0 1 1| 2z (2)
0 1] z

Remark 4.1. The MTO incentive matriz (2) is a case of monotonic incentives in which a change in
the instrument induce incentives towards the same direction for all choices. Notationally, it means
that for any values z, 2’ € supp(Z), the binary matriz L satisfies the following criteria:

Monotonic Incentives: L|z,t] < L[2',t]Vt € supp(T) or L[z,t] > L[, t]Vt € supp(T). (3)

This incentive criteria renders a range of identification and estimation results discussed further in
this text.

I use a simple economic model to describe the neighborhood choices of MTO families. Let the
real-valued function u, (¢, g) represents the rational preferences of a family w over the neighborhood
types t € {tn,tm,t;} and consumption goods g € G. Let B, (z,t) C G be the unobserved budget
set of consumption goods for family w when the neighborhood choice is fized at t € {t}, t,n,t;} and
the voucher assignment is fized at z € {z.,zs, ze}. The budget set B,(z,t) must be understood
broadly. It comprises typical items such as food, clothing, leisure, but also housing characteristics.
Equation (4) expresses the neighborhood choice of family w when the voucher is fixed at z as a

utility maximization problem:

T.,(z) = argmax < max uw(t,g)> (4)
te{ty tm,tnt \ 9EBu(2t)

Incentives enter this economic model as inclusion relations among the budget sets. For instance,
Section 8 subsidizes medium-poverty neighborhoods while the experimental voucher z, does not.
Vouchers subsidies allow families to afford consumption bundles that exceed the family’s own re-
sources. Thus if the neighborhood choice were fized at medium-poverty (t,,), then a family w
would face a larger budget set if assigned to Section 8 (zg) instead of the experimental voucher
(ze). Notationally, this means that B, (ze, tm) C B (28, tm). On the other hand, neither zg nor z,
subsidize high-poverty neighborhood (¢3). Thus if the neighborhood choice were fixed at t, the
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budget sets of family w would remain the same, that is, B, (ze,tn) = B (zs8,ty). Assumption A-1

lists all budget set relations generated by the voucher subsidies.

Assumption A-1. For any family w, the following inclusion relations among budget sets hold:

Poverty Level ‘ Control z Experimental z, Section 8 zg
ngh t, Bw(ZCa th) = Bw(zm th) = Bw(ZSu th)

Medium t,, | Bu(ze,tm) = B (zey tm) C  Buy(zs,tm)
Low ¢ Bw(zc,tl) C Bw(ze,tl) = Bw(z&tl)

Each row presets relations among budget sets of family w, B,,(z, t), across voucher assignments z € {z., 23, 2. }
for a fixed neighborhood choice t € {tp, tm, 1}

Remark 4.2. Budget set relations in A-1 stem from the incentive matriz (2) and can be generically
characterized by the following the rule:

L{z,t] < L[Z,t] = By (2,t) C Bu(2',t) Vw. (5)

The budget set relations in A-1 arise by applying (5) for each column t € {t;,tm,ty} and across
all rows z,2" € {zc, 28, ze} of the incentive matriz L in (2).

4.1 Choice Restrictions and The Response Matrix

Section 2 explains that the identification of causal parameters hinges on the elimination of response-
types that are unlikely to occur. The elimination is based on a set of choice restrictions that arise by
using revealed preference analysis to exploit the information on the incentives induced by a social
experiment. Lemma L-1 states a general rule that uses the Weak Axiom of Revealed Preferences

(WARP)® to translate the content of the incentive matrix L into choice restrictions:

Lemma L-1. WARP implies that choice rule (6) holds for any instrumental values of z,z’ €
supp(Z) and any choices t,t' € supp(T) :

If T,(z)=t and L[, t]—L[2,t]<0<L[Zt]—- L[zt then T,(z)#t. (6)
Proof. See Appendix A.1. O

The choice rule in L-1 is intuitive. Suppose a family w chooses ¢ when assigned to z, i.e.
T.,(z) = t. This means that choice t is preferred to ¢ under z. As the instrument changes from z to
', the incentives to choose ¢ increase (0 < L[z, t] — L[z,t]) and the incentives to choose ' decrease
(L[2',¥] — L[2,#'] <0). As a consequence, family w does not choose ¢ under z’.” Lemma L-2 lists

the choice restrictions generated by applying L-1 to the incentive matrix (2).

8This paper adopts the WARP criteria suggested by Richter (1971) which is based on the interpretation of
Samuelson (1938) seminal paper . Specifically, if bundle (¢, g) is chosen over (#',g’) when both were available in the
budget set B, then bundle (¢, g) is said to be (directly) strictly revealed preferred to (t',g'), that is, (t,g) =2 (t',g').
WARP means that if (, g) is revealed preferred to (¢',¢’) then it cannot be the case that (', g’) is revealed preferred
to (t,9), in short, (t,9) =& (t',9') = (t',¢") X& (t,9).

WARP operates in the following manner. If T,,(z) = ¢, then there must exists an (unobserved) bundle (¢, g*); g* €
B.,(z,t) that is strictly revealed preferred to any bundle (¢',¢'); ¢’ € Bu.(z,t'). As the instrument shifts z — 2, the
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Lemma L-2. WARP and Budget Relations A-1 generate the following choice restrictions:

‘ Choice Restrictions generated by WARP

1] Tu(ze) =1t = T.(z.) =t and T,(zs) # tn
2| To(ze) =tm = Tu(ze) £ty and T,(2s) # tn
3| Tu(ze) =tm = Tu(ze) =ty and T,(z5) =t
4 | Ty(ze) =tn = Tu(ze) =tn and T,(z8) # t
5| Tw(zs)=tn = Tu(z.) =ty and T, (ze) = tn
6 Tw(28) =1 = Tw(ze) =1
Proof. See Appendix A.2. O

Choice restrictions in L-2 have clear interpretations. The first restriction states that if a family
chooses low-poverty under control group — no subsidy — then this family should also choose low-
poverty under the experimental voucher, which subsidizes low-poverty neighborhoods. Moreover,
this family does not choose high-poverty under Section 8, which subsidizes both low and medium-

poverty neighborhoods.

Remark 4.8. Choice restrictions in L-2 emerges from the combining WARP with the budget set
relations A-1 that arise from the incentive design of the experiment. Those restrictions hold for
each family w regardless whether budget sets B, (z,t);t € {th,tm,t1}, 2 € {z¢, 28, 2¢} are observed.
The restrictions also hold regardless of family’s voucher assignment Z,,, neighborhood choice T,,, or
whether the family uses its assigned voucher to relocate.

If a family decides to relocate to a low-poverty neighborhood under no subsidy, then this family
reveals a preference for low-poverty instead of medium-poverty neighborhoods. It is reasonable
to assume that this family would maintain its decision if a subsidy that applies to both low and
medium-poverty neighborhoods were offered. This rationale can be understood as assuming that
choices are normal goods. Consider a family that debates between low and medium poverty neigh-
borhoods. Suppose that this family chooses a low-poverty neighborhood under no subsidies. This
decision can interpret as the consumption of one unit of the good called low-poverty neighborhood.
Now suppose a subsidy is offered to both neighborhood types. The subsidy can be interpreted as an
increase in income as it applies to both of the choices being considered. If the neighborhood choice
is a normal good, then an increase in income cannot decrease its consumption. Thus the family
would still consume one unit of the low-poverty neighborhood good. Assumption (A-2) formalizes

this rationale in terms of incentives L :

Assumption A-2. Normal Choice: Let z,2’ € supp(Z) and t,t' € supp(7T) such that
If T,(2)=t and L[z,t|= L[z,t] < L[Z/,¢] = L[2',t] then T,(2") #t. (7)

Normal Choice A-2 adds another choice restriction to the six restrictions generated by WARP
(L-2). The new restriction can be stated as T, (z.) # tn = T, (28) = Ti(2.). Panel C' of Table 7

displays the seven choice restrictions. Panel C of Table 7 shows that these restrictions eliminate 20

consumption budget set associated with ¢ increases as B (z,t) C B, (2,t) due to L[z,t] < L[z’,t] while the budget
for t' shrinks B, (z,t") 2 B.(2',t') due to Lz,t'] > L[2',t,]. Thus, by WARP, no bundle (¢, ¢'); ¢’ € B.(z',t') can
be reveled preferred to (¢,g*) and thereby T, (2') # t'.

14



of the 27 possible response-types.'? The seven response-types that survive the elimination process

are arranged into the Response Matrix R displayed in Lemma L-3.

Lemma L-3. Let T,,(z) be defined as in (4) such that Budget Relations A-1 hold. Then WARP A-
1 and Normal Choice A-2 generate the following response matrix R :

S1 S2 83 S84 S5 S S7

th tm U th o tm t] Tw(ze) (8)
MTO Response Matrix: R= |t tm t tm t tm tm T,
th tm t ot ottty T,

Proof. See Panel C of Table 7. O

The MTO response matrix R in (8) displays counterfactual choices by voucher assignments. Its
columns correspond the seven response-types si, ..., sy that survive the elimination process while
rows correspond to each voucher assignments z., ze, 2s.

Each response-type characterizes a particular choice behavior. Response-types si, s2, s3 are
called always-takers as those refer to families who choose the same neighborhood type regardless of
the voucher assignment. The voucher incentives are insufficient to instigate relocation for families
of type s1, who always choose a low-poverty neighborhood. Families of type ss always choose a
medium-poverty neighborhood while s3-families always choose low-poverty.

Response-types sy, S5, Sg, 87 are called compliers (or switchers) and refer to families that change
their neighborhood choice according to voucher assignments.'! s;-families are the most responsive.
They chose high-poverty under no voucher, medium-poverty under Section 8 and low-poverty un-
der the experimental voucher. ss-families relocate to low-poverty neighborhood whenever subsidy
is available but remain in high-poverty areas under no subsidy. sg-families choose low-poverty
neighborhoods if this is the only available subsidy. Otherwise, these families choose medium-
poverty neighborhood. s7-families chose medium-poverty whenever subsidy is available and remain
in high-poverty neighborhood otherwise. Section 6 uses observed data on propensity scores to test
if the MTO response matrix is empirically sound.

The response-types are not observed. Nevertheless, the response matrix determines the set of
possible response-type that a family can take given its voucher assignment and its neighborhood
choice. If family w is assigned to Section 8 (Z, = zg) and chooses a low-poverty neighborhood
(T, = t;), then, according to the second row of the response matrix R, this family must be of

type s3 or s5. Figure 2 displays a diagram that maps observed data on voucher assignments and

OWARP alone eliminates 18 response-types while Normal Choice A-2 eliminates two.

11 Appendix I examines a modification of the incentive matrix that increases the incentives of choosing a low-poverty
neighborhood when the family is assigned to the experimental voucher. This increase in incentives can be interpreted
as the counseling component of the experimental voucher. This modification adds one response-type to the response
matrix which refers to the fraction of s; families (¢5-always-takers) that are persuaded to move to a low-poverty only
due to counseling but are not persuaded to move to a low-poverty neighborhood by the rent subsidy. The behavior
is unlikely.
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neighborhood choice into the seven unobserved response-types of the MTO response matrix.

Figure 2: From Observed Vouchers Assignments and Neighborhood Choices to Unob-
served Response-types

Voucher . .
. Control (z.) Section 8 (z3) Experimental (z.)
Assignment
Neighborhood | High | Medium| Low High | Medium| Low High | Medium| Low
Decision (tn) (tm) (t) (tr) (tm) (t) (tr) (tm) (ta
H T
. 1
J :
1
v II
Response-types S1 S2 S3 S4 S5 S6 S7
L AN N N PN PN PN
T (zc) th m t th th tm th
T(zs3) tp tm t tm, 4] tm tm
T(ze) th tm t t t i th

This figure describes how voucher assignments and neighborhood choices map into the MTO response-types. There are three
possible voucher assignments: Control (z.), Section 8 (zg) or Experimental (z¢). There are three neighborhood choices: high-
poverty neighborhood (), medium-poverty neighborhood (¢,) or low-poverty neighborhood (¢;). The combination of voucher
assignment and neighborhood choice generate nine possibilities. There are seven response-types according to the response matrix
R in (8). These response-types are denoted by s1, ..., s7. The mapping between the voucher assignments and neighborhood
choices into response-types is represented by connecting lines. Solid lines denote the choice of high-poverty neighborhood.

Dotted lines denote the choice of medium-poverty neighborhood. Dashed lines denote the choice of low-poverty neighborhood.
Bold lines refer to the most frequent neighborhood choice for each voucher assignment.
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5 Properties of MTO Response Matrix

This section is dedicated to the study of the properties of the response matrix R. All theoretical
results regarding identification and estimation of causal parameters stem these properties. Sec-
tion 5.1 presents a decomposition that expresses the response matrix as a sum of binary matrices.
Section 5.2 exploits this decomposition to establish a necessary and sufficient condition for the un-
ordered monotonicity criteria to hold. Section 5.3 builds upon 5.1 and 5.2 to state four properties
of the MTO response matrix termed as (1) Monotonicity; (2) Nested Choices; (3) Lonesum; and
(4) Separability.

5.1 Response Matrix Decomposition

Let By = 1[R = t];t € {t;,tm,tn} be the binary matrix that indicates which elements in R take
value t. Each binary matrix By;t € {tp,t;,t;} has three rows corresponding to the instrumental
values (z, 28, z.) and seven columns corresponding to the response-types (s1,..., 7). I use Rz, s]
to denote the element in matrix R associated with instrumental value z and response-type s and
B4z, s| for the respective element of B;. Therefore R[z,s] =t < Byz,s] = 1.

Equations (10),(11) and (12) display B, , By, and By, respectively. Each binary matrix By
is decomposed into B; = Cy - Ay, where C} is the array the non-zero columns of By and A; is a

mapping between the vectors in C; and B;. Specifically, the response matrix R is decomposed as

Binary Decomposition: R= E t-B; = E t-CiA;, (9)
tesupp(T) tesupp(T)
where By, Cy, A, for t € {tp, tm,tn} are given by:
S1 82 83 S84 S5 S6 87 84, 85 87 S1 S1 82 83 84 S5 S6 87
1 0 0 0o 1 1 11 0o 0 0o 1 1 0 0
B, =1 o o 0o 0 0 o0 0 o 1/-fo o o o 0 0 1 (10)
1 0 0 0 0 o0 1 0 11 1 0 0 0 0 0 ©
C), Ay,
S1 82 83 S84 S5 S6 87 84, 87 S6 82 S1 82 83 S84 S5 S6 87
o 1 0 0 0 1 0 0 11 o 0 0o 1 o0 0 1
B,,=|o 1 0o 1 o0 1 1 1 1 1|l-]Jo o o 0o o0 1 0 (11)
0O 1 0 0 0 0 0 0 0o 1 o 1 0 0 0 0 0
Ctm Atm
s1 s2 83 s1 S5 S6 ST s1,8 S5 S3 81 Sz 83 81 85 8¢ 87
0O 0 1 0 0 0 0 0 0o 1 o 0 0o 1 0 1 0
B,=/0 0o 1 0 1 0 o0 0 1 1|0 o o o 1 o0 0 (12)
o 0o 1 1 1 1 0 1 11 o 0o 1 0 0 0 0
Ctl Atl

Matrices Ay, By, C; play a primary role in both identification and estimation of causal parame-

ters. Section 7.1 shows that the identification of causal parameters depends only on the properties

of binary matrices B;. The section employs matrices C; and A; to develop a closed-form solution for
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the nonparametric identification of all counterfactual outcomes. The solution applies to all social
experiments that present monotonic incentives. Section 8.2, employes matrices By in the estima-
tion of response-type probabilities (Lemma L-7). These matrices are also used in the estimation
of the distribution of pre-program variables conditioned on response-types (Appendix A.13). Next
section employs matrices C; to generate a a necessary and sufficient condition for the unordered

monotonicity criteria to hold.

5.2 Unordered Monotonicity: A Necessary and Sufficient Condition

Heckman and Pinto (2018) introduce a monotonicity criteria that applies to unordered choice
models. The criteria is formalized in Equation (13) and is useful to investigate the properties of

the MTO response matrix.

Unordered Monotonicity: for any choice t € supp(T'), and for any z, 2" € supp(Z),
1T, (2) =t] > 1[T,(2') =t] for allw € Q or 1[T,,(2) =t] < 1[T,(2") =¢t] for allw € Q, (13)

where supp(T'), supp(Z) stand for the support of the choices and the instrumental variable and 2
denotes the sample space.

Unordered monotonicity (13) is characterized by a choice inequality for each choice ¢ € supp(T')
and each pair of instrumental values z,z’ € supp(Z). Each inequality employs choice indicators
that capture the notion that all agents move against or towards a choice value as the instrument
varies. For instance, 1[T,,(z) = t| > 1[T,,(?’) = t] Yw in (13) means that any family w that chooses
t under z, i.e. T,,(z) = t, also chooses t under 2/, i.e. T, (2') =t.!?

Theorem T-1 exploits the decomposition of the previous section to present a necessary and

sufficient condition for unordered monotonicity.

Theorem T-1. Unordered monotonicity (13) holds if and only if Verifying Condition (14) is zero.

> (@e) o (cie))e=o, (14)

te{tl 7t7n 7th}

where C; comes from decompositions (10)-(12), ¢ stand for vectors of element ones,'? C; =
(et — Cy) is the complement of binary matrix Cy, and ® denotes the Hadamard (element-wise)

multiplication.
Proof. See Appendix A.3. O

The verifying condition (14) rests on a multiplication of binary matrices that is easily computed.

It only depends on matrices Cy;t € supp(T') that arises from the decomposition (9) of the response

'2Unordered Monotonicity (13) does not require choice values to be ordered and it is useful to model unordered
choice models. In contrast, the monotonicity criteria of Angrist and Imbens (1995) requires choice values to be
ordered. Unordered monotonicity does not imply or is implied by the monotonicity criteria of Angrist and Imbens
(1995).

BVectors ¢ have dimension 3 X 1 in the case of MTO C; matrices.

19



matrix R. Appendix G shows that condition (14) applies to the response matrix R in (8), therefore

unordered monotonicity (13) holds.'*

Remark 5.1. Appendixz G evaluates the condition of Theorem T-1 for the MTO response matrix
R in L-3. The condition is fulfilled, therefore Unordered monotonicity (13) holds. Unordered
monotonicity traces back to the property of monotonic incentives of the MTO incentive matrizc
Pinto (2016).

5.3 Examining the Properties of MTO Response Matrix

In the case of MTO, unordered monotonicity comprises nine inequalities, one for each of the combi-
nation of three choice values (tl, tm, th) and three pairs of instrumental values (z., 23), (zc, Ze), (ze, 28).
Monotonicity Property P-1 presents an example of nine monotonicity inequalities that generate

the MTO response matrix.

Property P-1. (Monotonicity) The nine unordered monotonicity inequalities below generate the
response matriz R of Lemma L-3.

| Z-pairs T | Monotonicity Relations
Monotonicity Relation 1 | (ze,28) tn | 1[Tw(ze) =tn] > 1[Tw(zs) = ts]
Monotonicity Relation 2 | (zs,ze)  tn 1[Tu(z8) =tn] <  1[Tw(ze) = th]
Monotonicity Relation 8 | (ze,ze) tn | 1[Tw(ze) =tn] < 1[Tw(ze) = th]
Monotonicity Relation 4 | (ze,28)  tm | 1[Tw(2ze) =tm] < 1[Tw(28) = tm]
Monotonicity Relation 5 | (zs,2ze) tm | 1[Tw(zs) =tm] > 1[Tw(ze) = tm]
Monotonicity Relation 6 | (ze,2zc) tm | 1Tw(2ze) =tm] < 1[Tw(2e) = tm]
Monotonicity Relation 7 | (zc, zs) t 1T (ze) =] < 1[Tu(zs) = t]
Monotonicity Relation 8 | (zs,ze) 4 1[Tu(zs) =t < 1[Tw(ze) =]
Monotonicity Relation 9 | (ze,2c) 1Tu(ze) =t] > 1[Tu(ze) = t]
Proof. See Appendix A.4. O

The monotonicity relations in P-1 are equivalent to the MTO choice restrictions (Panel C' of
Table 7) as both generate the same response matrix. In addition, Lemma L-4 states that the
monotonicity relations in P-1 are unique. This means that a change in the direction of any of
the nine monotonicity inequalities in P-1 generates a response matrix that differs from R in L-3.
Section 6 exploit this feature to do inference on the behavior assumptions that yield the MTO

response matrix.

Lemma L-4. There is no other set of monotonicity relations other than P-1 that generates the
response matrix R in L-3.

Proof. See Appendix A.5. O
Heckman and Pinto (2018) show that unordered monotonicity can be traced to a lower-triangular

property of binary matrices B;. Specifically, unordered monotonicity holds if and only if each bi-

nary matrix By;t € {tp,tm,tr} is equivalent to a lower triangular matrix, that is to say that each

“Pinto (2016) studies the choice incentives in more general settings. He shows that Monotonic Incentives (4.1)
imply Unordered Monotonicity (13) under WARP and Normal Choice (6) .
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Byt € {tp,tm,tn} can be transformed into a lower triangular matrix by row and column permu-
tations.'® This triangular equivalence is easily verified. Consider a permutation of the rows and
columns of matrix By, towards increasing values of row-sums and decreasing values of column-
sums. The resulting matrix Eth is displayed in (15), which is indeed lower triangular. The same

feature is shared by matrices By, and By,.

s1 S22 83 S4 S5 Sg St s1 St Si4 S5 S2 83 Sg
0 0 1 1 0 1 Zc 1 0 0 0 0 0 0 28
By,=|1 0 0 0 0 0 23 = By, =|1 1 0 0 0 0 0] z (15)
0 0 0 0 0 1 Ze 1 1 1 1 0 0 0 Ze
Binary Matrix By, Ordered Row and Column Sums — Lower Triangular

It is useful to translate the triangular equivalence of binary matrices By into two useful properties
of the response matrix R. The first property is that the sets of response-types that take the choice
value t for any two instrumental values z, 2’ are nested. Some notation is helpful to clarify this
property. Let ¥(z) be the set of response-types that take value ¢ when in instrument is set to z,
that is:

Yi(z) = {s € supp(S); R[z, s] = t}. (16)
The triangular equivalence of B; implies that for any two instrumental values z, 2’ it must be the case
that ¥;(z) is a subset of ¥;(z") or vice versa. In other words, the sets ¥;(2); z € supp(Z) are nested.
To illustrate, consider the set ¥, (z.) that consists of the response types in the response matrix R
that take value t;, for voucher z.. The first row of the MTO response matrix in L-3 corresponds to
2. and shows that response-types s1, s7, S4, 5 take value ¢;,. Thus ¥, (2.) = {s1, s7, 84, 55}. For z,
we have that ¥, (z.) = {s1,s7}, and, for zg, we have that ¢, (z3) = {s1}. As expected, these sets
are nested, that is, 3, (28) C ¢, (2e) C X4, (2¢). This Nested Property is formally stated in P-2.

Property P-2. (Nested Choices) If unordered monotonicity (13) holds, then for any values
z,2" € supp(Z), and any t € supp(T'), we have that X;(z) C X¢(2') or Ty(2") C Ti(2).

Proof. See Appendix A.6. O

Nested Property P-2 is used to generate a novel application of the well-known method of two-
stage least squares in Section 8.1.

The triangular equivalence of binary matrices B; also implies a condition on every the 2 x 2
sub-matrices of the response matrix R. Namely, if the diagonal elements of any 2 x 2 sub-matrix in
R take value t, then at least one of the off-diagonal must also be ¢. This is termed lonesum property
and is stated in P-3.

15This means that each binary matrix By;t € {th,tm,tn} is a lonesum matrix. This type of matrix can be
equivalently characterized in terms of its row and column sums. Namely, a binary matrix A is lonesum if and only if
each of its elements A[i, j] can be expressed as a function of the matrix row-sums and column-sums (Brualdi, 1980).
Heckman and Pinto (2018) exploit this feature to show that unordered monotonicity is equivalent to a separability
condition.
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Property P-3. (Lonesum) Under unordered monotonicity (13), the following condition holds for
any 2 X 2 sub-matrices of the response matric R :

if ( g[[zz,”ss]] g[[;’,,il/]] ) = ( tf, tt/ ) thent' =t ort’ =t. (17)

for any t,¢',t" € supp(T), z,2’ € supp(Z) and s, s’ € supp(S).

Proof. See Heckman and Pinto (2018). O

The final property exploits the fact that unordered monotonicity (13) holds if and only if the
indicator for each choice ¢ € supp(T') can be expressed as a function that is weakly separable on the
instrumental variable Z and unobserved variables V' that affect choice T This Separability Property
is stated in P-4.

Property P-4. (Separability) Let D, = 1[T = t| be the binary indicator for each choice t €
{th,tm,t1}. Then there must exist real-valued functions ¢; : supp(Z) — R and 7, : supp(V) — R
such that Dy can be expressed by a weak separable equation below:

Dy =1[p(Z) > (V)] Vt € supp(T). (18)

Proof. See Heckman and Pinto (2018). O

The lonesum property P-3 and the separability property P-4 are used to address the problem

of partial identification of counterfactual outcomes in Section 9.

6 Assessing Model Assumptions

Lemma L-4 implies that the choice restrictions generated by the revealed preference analysis (Panel
C’ of Table 7) are equivalent to (and only to) the nine monotonicity relations in P-1.

A benefit of the monotonicity relations over choice restrictions is that each relation 1[7T},(z) =
t] > 1[T,,(7') = t] Yw € Q implies a propensity score inequality P(T =t|Z = z) > P(T =t|Z = 2')
that can be evaluated using observed data. Thereby we can do inference on the seven choice
restrictions induced by the revealed preference analysis by verifying if the nine propensity score
inequalities evaluated from data corroborate the direction of the nine monotonicity relations in
P-1.

Table 8 presents the nine unordered monotonicity relations that generate the MTO response ma-
trix as well as the nine propensity score inequalities obtained from observed data. The table shows
that the direction of each propensity score inequality matches the direction of each monotonicity
inequality in P-1.

Table 8 provides strong evidence in favor of the revealed preference analysis of Section 4. Sup-
pose that each of the nine propensity score inequality could be either greater than (>) or less than
(<). The combination of all possible relations of these nine inequalities totals 2° = 512. Some

of these combinations are not feasible because they do not account for the fact that propensity
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Table 8: MTO Unordered Monotonicity and Respective Propensity Scores Inequalities

Values of Unordered Monotonicity Propensity Score

Z-pairs T Relations Inequalities
Relation 1| (zc,2s) tn | 1[Tw(ze) =tn] > 1[Tw(zs) =tn] = PT =tp|Z =2.)=0.82 > 0.34=P(T =tn|Z = zs)
Relation 2 | (2zs,2e) tn | 1[Tw(zs) =tn] < 1[Tw(ze) =tn] = P(T =tn]|Z =23) =0.34 < 044 = P(T = tp|Z = z.)
Relation 3| (ze,2c) th | 1{Tw(ze) =tn] < 1[Tw(ze) =tn] = P(T =tp|Z =2.)=0.44 < 0.82=P(T =tn|Z = z.)
Relation 4 | (zc, 28) tm | 1[Tw(2e) =tm] < 1[Tw(28) =tm] = P(T =tm|Z =2.) =0.15 < 0.57 = P(T = tm|Z = 2s)
Relation 5 | (28,2¢) tm | 1[Tw(z8) =tm]| > 1[Tw(ze) =tm] = P(T =tm|Z =28) =0.57 > 0.07=P(T = tm|Z = z.)
Relation 6 | (ze, ze) tm |1[Tw(ze) =tm] < 1[Tw(ze) =tm] = P(T =tm|Z = 2.) =0.07 < 0.15=P(T =tn|Z = z)
Relation 7| (zc,28) t1 | 1{Tw(ze) =t] < 1[Tw(zs)=t] = PT =4|Z=2.)=0.03 < 0.09=P(T =4|Z = zg)
Relation 8 | (z8,2e) i | 1[Tw(zs) =t] < 1[Tu(ze) =t] = P(T =t]Z=25)=0.09 < 049=P(T =4|Z = z.)
Relation 9| (ze,2c) | LTw(ze) =t] > 1[Tw(z) =t] = PT =4|Z=2)=0.49 > 0.03=P(T =4|Z = z.)

The third column of this table displays the nine unordered monotonicity inequalities. Those inequalities are equivalent to the
choice restrictions generated by revealed preference analysis displayed in Panel C’ of Table 7. Each unordered monotonicity
inequality correspond to a propensity score inequality that can be evaluated by observed data. The last column of this table
presets the estimates for the unconditional propensity scores of MTO. The relation of each propensity score inequality

complies with its respective unordered monotonicity criteria.

scores must sum to one, i.e. >0, 0 P(T = t|Z = 2) =1 for each z € {2, 25, 2, }. Indeed,
the total number of feasible combinations of propensity score inequalities is 336. The revealed
preference analysis of Section 4 endorses a single pattern out of the 336 possible ones. This pattern

of propensity score inequalities is exactly the one corroborated by data.

Remark 6.1. Response matrix R in L-3 stems from combining MTO incentives and revealed
preference analysis. The same response matrix also arise under alternative approaches that do
not evoke preference analysis nor the design of the MTO intervention. Appendiz H presents an
alternative approach that relies on the premise that families share similar choice behavior. The
approach assumes that a change in the instrument that induces a family towards a choice cannot
induce another family against the same choice. This assumption can be understood as a generalized
version of the notions of compliers and definers for multiple choices models. In contrast with the
revealed preference analysis, this assumption is not testable. Nevertheless, both approaches yield
the same Response Matrix R in L-3.

7 Merging the Economic Model into a Causal Model with IV

Section 4 elicits a simple economic model to examine counterfactual choices in MTO. The economic
model however is not appropriate to investigate the causal effects of neighborhood choices on the
outcomes. To advance the analysis, it is necessary to merge the economic model of Section 4 into a
standard IV model that is suitable to investigate the causal effects of neighborhood choices on the

outcomes.
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In the economic model, the choice of family w is driven by an unobserved utility function uy,
that represents family preferences. In the causal model, the choice of family w is expressed as a
function fr(Z,, V,,) where family preferences are characterized w.l.o.g. by an unobserved random
vector V,, of arbitrary dimension. Equation (19) expresses the neighborhood choice of a family w

in both economic and causal models:

7= agmas (mx u(tg)) = fr(Z., V) (19)
te{tl,tm,th} QEBW(Zwvt) \—v—/

TV
Economic Model

The random vector V' in (19) also plays the role of the unobserved confounding variable that

Causal Model

generates selection bias. It causes both the choice T" and outcomes Y. The standard IV model is
then defined by equations (20)-(21) and the independent condition (22).'6

Choice Equation : T = fr(Z,X,V); supp(T) = {th, tm, i} (20)
Outcome Equation : Y = fy(T,V, X e). (21)
Independence Condition : Z 1L (V,€)|X; supp(Z) = {zc, 28, z¢ }- (22)

Variable X stands for observed pre-intervention variables that we wish to control for; Y is an
observed post-intervention outcome and e is an unobserved error term; Condition (22) means that
(V,e) and Z are mutually independent conditioned on X. This implies that the instrument Z
affects Y only through its impact on choice T. I evoke two standard regularity conditions: the
expectation of Y exists, F(]Y|) < oo, and that each neighborhood option is chosen by at least
some families for each voucher assignment, P(T' = t|Z = z,X) > 0V (z,t) € supp(Z) x supp(T).
All variables are defined on the common probability space (€2, F, P), where (X, Z,, Vo, Tw, Yo, €w)
denotes the realized values of random variables (X, Z, V,T,Y ¢) for family w € 2. No assumptions
are made on the functional form of the choice equation fr(-) or the outcome equation fy(-). For
sake of notational simplicity, I suppress pre-treatment variables X henceforward. All the analysis
can be understood as conditional on pre-treatment variables X.

Counterfactual outcome Y (t) = fy(t,V,¢€) is defined by fizing the treatment T of outcome
equation (21) to the value t € {ts,tm,t;}.!” The counterfactual choice T'(z) = fr(z, V) stands
for the neighborhood choice when the instrument Z is fized to the value z € {z.,zg, z¢}. In this
notation, the observed outcome Y and neighborhood choice T' can be expressed as

Y= Y Y@®-1T=t = Y(T), and T= Y T(2)-1Z=2 = T(2),
tesupp(T) z€supp(Z2)
where 1[a] is the indicator function that takes value 1 if « is true and 0 otherwise.

The Response Variable S is the 3-dimensional random vector of counterfactual choices defined

n (23). S is unobserved as it is a function of the unobserved confounding vector V' and its support

1611 the language of Frisch (1938); Haavelmo (1943, 1944), these functions are called are autonomous equations,
that means deterministic functions that remain invariant under manipulation of their arguments.

17 Piging is causal operation that plays a central role in the study of causality. See Heckman and Pinto (2014) for
a recent discussion on fixing and causality.
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supp(S) = {s1,...,87} consists of the seven response-types in L-3.'
!/

S =[T(z), T(2s), T(z)] = [fr(ze,: V), fr(zs, V), fr(ze, V)],

Choice T can be expressed as a function of instrument Z and response variable S :
T=[1Z=z]),1Z=2],1Z=2]]-S. (24)
Equation (24) implies that T is deterministic given Z and S. Independence relations (25)—(27) hold

in model described by equations (20)-(23)."

IV Properties: Z 1L Y (t) and Z L T (25)
Matching Properties : Y (¢) LL T|V and also Y'(¢) LL T'|S (26)
Response Variable Properties : S 1L Z, Y 1L Z|(S,T), and Y L T|(S, Z2) (27)
IV Properties (25) are often called exclusion restriction and IV relevance. The Matching Prop-
erties (26) imply that if V' (or S) were observed, the counterfactual outcome E(Y(¢)|V) (or
E(Y(t)|S)) could be evaluated by the conditional expectation E(Y |V, T =t) (or E(Y|S,T =t)).

Independence relations (27) are useful properties of the response variable S.

(23)

In short, the identification problem consists of assessing unobserved quantities, i.e., response-
type probabilities P(S = s) and counterfactual expectations E(Y (t)|S = s) for (t,s) € {tn,tm,t1} X
{s1,...,s7}, from observed data, i.e., propensity scores P(T = t|Z = z) and outcome expectations
EY|T =t,Z = z) where (t,2) € {tp,tm,t1} % {zc, 28, ze}. Equation (28) connects these observed
and unobserved quantities:*"

EkWMT=t,Z=2))P(T =tZ==z2) = Z 1T =tS =5,Z =2 E(k(Y(¢))|S =s) P(S =s), (28)

Observable s€supp(S) Known from R Unobserved

where k : R — R is any real-valued function. A short list of properties of the equality (28) is given

below:

1. The indicator 1[T = t|S = s, Z = z] in (28) is deterministic (see (24)). Most important, this
indicator is known as it is given by the element B[z, s] of binary matrix B, = 1[R = {].
Indeed, R]z, s] is the value that choice T takes conditioned on Z = z, S = s, that is R[z, s] =
(T'Z = z,S = s). Thereby, the indicator 1{T" = t|.S = s, Z = z] is equal to the binary matrix

element By|z, s].

2. If we set k(Y) =Y in (28), then the expected value of the observed outcome conditioned on
neighborhood choice T" and the instrument Z is expressed as a mixture latent counterfactual
means F(Y (t)|S = s) and response-type probabilities P(S = s). Setting x(Y) = 1[Y < y]
enables to express the observed cumulative density function (CDF) of the outcome as a

mixture the counterfactual outcome CDF's.

3. If k(Y) is replaced by the pre-program variable X is such that X L T'|S, then equation (28)

188 does not add additional information to the model and can be understood as a discrete transformation of
random vector V. S is a balancing score for V', that is, it is a coarse transformation of V' that suffices to control for
the confounding effects of unobserved variables V' that generate bias.

19Gee Heckman and Pinto (2018); Pinto (2014) for a proof.

20See Heckman and Pinto (2018); Pinto (2014) for a proof.
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reads:

ER(X)T=tZ=2)PT=tZ=2)= > 1T =tS=s2=2z E®rX)|S=s)P(S=s).
s€supp(S)
(29)

4. Setting x(Y) to a constant term enables to express observed propensity scores as a sum of
unobserved response-type probabilities:

PT=tZ=2= Y 1T =tS=s2=zPS=s). (30)
sesupp(S)

For notational simplicity, I suppress the transformation x(-) henceforward. Identification results

that apply to Y also apply to x(Y).

7.1 Identifying Causal Parameters

It is useful to express equation (28) in matrix notation to investigate identification conditions. Let
Qz(t) be the 3 x 1 vector of expected outcomes E(Y -1[T = t]|Z = z);t € {t}, tm, t;} when z ranges
in {z, zs, ze}. Let Q7 be the 9 x 1 vector that stacks vectors Qz(t), Qz(tm), Qz(t;) :

B(Y 1T =02 = =) BY|T = t,2 = 2) (T = )7 = =) Q(th)
Qz(t) = EY - 1T=t|Z=2) | =| EY|T =272 =2)P(T =t|Z = z3) and Qz = | Qz(tm)
EY -1[T =#||Z = z) EY|T=t72=z)PT=tZ=z) Qz(t)

(31)

The vectors of propensity scores Pz(t);t € {t;,tm,tn} and Pz are defined by setting Y in equa-
tion (31) to 1:

P(T:t|Z:Zc) Pz(th)
Py(t)= | P(T=tZ=2) | and Pz = | Py(tm) |- (32)
P(T:ﬂZ:Ze) Pz(tl)

Vectors Qz and Py correspond to the left-hand side of equations (28) and (30) respectively.

Let Pg be the 7 x 1 unobserved vector of response-type probabilities. Let Qg(t) be the 7 x 1
vector of unobserved counterfactual outcome expectations for each t € {tp, t;m, 1} Qg is the 21 x 1
vector that stacks Qs(tr), Qs(tm), Qs(tr) :

(tn)
(tm) |- (33)
s(t)

P(S =s1) E(Y(t)|S =s1) P(S = s1) Qs
Pg = : ,Qs(t) = : , and Qs = | Qs
P(S = s7) E(Y (t)|S = s7) P(S = s7) Q

Vectors Qg and Ps correspond to the unobserved term in the right-hand side of equations (28)
and (30) respectively.

The binary matrix By organizes the indicators 1[T = ¢|S = s,Z = z] of (29) for (z,s) €
supp(Z) x supp(S) as a rectangular array. Let Bg be the block diagonal matrix whose main

26



diagonal consists of matrices By, , By, and By,. Let Bp be the matrix that stacks matrices By, , By,
and By,. Notationally, we have that:

B, 0 0 B,
Bg = 0 B, O and Bp = | By, |, (34)
0 0 Btl Btl

where 0 stands for a null matrix that has three rows and seven columns. Under this notation, we
can express Equations (28) and (30) by the matrix expressions (35) and (36) respectively:

Outcome Equation: Qz(t) = By - Qs(t);t € {th, tm,t1} = Qz = Bg - Qs; (35)

Propensity Score Equation: Py (t) = By - Ps;t € {tp,tm,t;} = Pz = Bp - Ps. (36)

Remark 7.1. A consequence of Equations (35)—(36) is that the identification of the expected counter-
factual outcomes Qg and response-type probabilitiecs Ps depends only on the properties of matrices
binary matrices Bg and Bp. For instance, if Bp is inventible, then the response-types probabilities
Ps are identified by Ps = B;l - Pz. Binary matrices Bg, Bp are generated upon the response
matriz R. Thus the identification of causal parameters stems only on the properties of response
matriz R.

Identification of Counterfactual Qutcomes

Theorem T-2 provides a general identification formula that applies to any response matrix R
where the unordered monotonicity (condition T-1) holds. The formula is based on the binary

matrix decomposition B; = C;A; exemplified in (10)—(12).

Theorem T-2. If unordered monotonicity holds, all identified counterfactual outcomes can be
expressed by (Ath(t)> = (AtPS) where A; stems from decomposition B; = C;A; and +

denotes element-wise division. 2! Moreover, A;Qg(t) and A;Ps are identified by A;Qg(t) =
((CIC)\CIP(1)). and AcPs = ((CIC1) ' CiQ(1)). that is:

A;Qs(t) + AsPs(t) = (CiCy)'CL- Qz(t) + (C{Cy) ™' Cy - Py(t); Y t € supp(T). (37)
Identified Counterfactual Outcomes Identification Formulas
Proof. See Appendix A.7. O

Pinto (2016) shows that under monotonic incentives (3) the identification formula (37) simplifies

to:
(AtQS(t)> - (AtPS) - (c;lQZ(t)) - (C;lpz(t)); B, = CA,, tesupp(T).  (38)

Identified Counterfactual Outcomes Identification Formulas

The right-hand side of (38) summarizes all identified counterfactual outcomes. The left-hand

side of (38) provides the identification equations that can be evaluated by observed data. Ap-

21Let A, B be two vectors of same length, then A+ B = diag(B) ™' A, where diag(-) is the operator that transform
a vector into a diagonal matrix.
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pendix J exemplifies the use of the identification formula (38) to the familiar LATE model with

binary choices.

Equations (39)—(40) display matrices A;Qg(t) and A;Pyg in (38) for choice t.

E(Y (tn) - 1[S € {84, 85}])

AthQS(th) = E(Y (ty) - 1[S = s7])
B(Y (th) - 1[8 = 1))

9 At;LPS: P(S:S7)
P(S = s1)

P(S € {s4,85})
. (39)

Therefore the identified parameters (left-hand side of (38)) for ¢;, are given by:

(AthQS(t,,,)) - (Ath PS) _

E(Y (tp)|S = s7)

E(Y (t3)|S € {s4,55})
E(Y (t)|S = s1)

Equations (42)(43) display matrices C; 'Qz(t) and C; ' Py(t) in (38) for ty, :

11 1 0 -1
C,,=|001|=Cl'=]0 -1 1 |,
0 1 0 1 0
[ By AT =t3]|1Z = 20) — B(Y - 1[T = ]| Z = z)
= C;'Qu(th) = | BY AT = t)|Z = 20) — B(Y 1T = )17 = 2) |,
E(Y -1[T = tp]|Z = 2s)

P(T = th)|Z = 2¢) — P(T = t3|Z = )
and C, ' Py(ty) = | P(T =tn]Z = ze) — P(T = t4]Z = 25)

P(T =1tp|Z = 28)

Equation (44) displays the final identification formula in (38) for ¢. The left-hand side lists all the
identified counterfactual outcomes for ¢;, while the right-hand side can be evaluated from observed

data.

E(Y (tn)|S € {bmsy, s5})
BY ()] = 57)
E(Y (tn)|S = 1)

B(Y 1[T=t,]| Z=2.)— B(Y 1[T=t4]| Z=z2.)

P(T=t|Z=2.)—P(T=tn|Z=2c)

E(Y 1[T=ty]||Z=2.)— B(Y 1[T=t,]| Z=25)

P(T:th Z:ZC)fp(T:thJZ:Zg)
BY 1 [T=tn]| Z—2s)
P(T:thlzz,?:g)

At Qs(ty) + Ay Ps

C.,'Qz(th) + Cy, Py (th)

The identification formulas for t,, and ¢; are displayed in (45)—(46).

E(Y(tm)|S S {84, 87})

E(Y (t)|S = s6) =

E(Y(tm)|S = 82)

r EB(Y-1[T=t,,]|Z=28)— E(Y -1[T=t,,]| Z=2,)
P(T=t,|Z=28)— P(T=t,n]| Z=2.)
B(Y 1[T=tn)|Z=2.)— E(Y 1[T=t,,]| Z=z.)
P(T=t|Z=2.)—P(T=tm|Z=2c)
E(Y 1[T=t,,]|Z=2.)
L P(T=tm|Z=2.)

Ai,, Qs (tm) + Ay, Ps

E(Y (t)|S € {bmss, s6}) |

E(Y (t)|S = s5) =

E(Y (t)|S = s3)

CilQz(tm) + CL L Py (tm)

- E(Y-1[T=t)]|Z=z.)— E(Y -1[T=t,]| Z=2s)
P(T:tl Z:Zeg_P(T:tl‘Z:ZS)
E(Y-1[T=t,]|Z=2s)— E(Y -1[T=t,]| Z=2.)
P(T=t,|Z=23)— P(T=t,|Z=2¢)

E(Y 1[T=t)]| Z=z.)
P(T:tl‘Z=ZC)

A Qs(t)) + Ay Pg

G, 'Qz(t) + C ' Pa(t)
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Theorem T-3 lists all the causal parameters that are nonparametrically identified by the MTO

response matrix:

Theorem T-3. Response matrix R in L-3 renders the identification of the following quantities:
(1) All response-type probabilities P(S = s); s € {s1,..., s7} are identified.
(2) The following counterfactual outcomes are identified:

| High Poverty (t4) Medium Poverty (t,,) Low Poverty (¢;)

Always-takes E(Y (tp)|S = s1) E(Y (t,)|S = s2) E(Y (t;)|S = s3)

Single response-types E(Y (tp)|S = s7) E(Y (tm)|S = s6) E(Y (t;)|S = s5)
Double response-types | E(Y (t3)|S € {84,85}) E(Y (tm)|S € {s4,87}) E(Y (;)|S € {34, 86})

(3) For any variable X such that X 1l T'|S holds, P(X = z|S = s) is identified for all s € supp(S)
and z € supp(X).

Proof. See Appendix A.8. O

Item (1) of T-3 states that each response-type probability is identified. In particular, it is
possible to evaluate the share of families whose neighborhood decision remains the same regardless
of the voucher assignment — always-takers s, s9, 83 — the share of families that most responsive to
voucher assignment s4 and the share of those families who change their choice only for a specific
voucher assignment — ss, Sg, S7.

Item (2) of T-3 states that nine outcome counterfactuals are identified. The first row stands for
counterfactuals for always-takes (no choice variation), the second row lists the identified counterfac-
tuals conditioned on a single response-type, and the last row presents the counterfactual outcomes
conditioned on two response-types. These are termed primitives as any causal parameter that is
point-identified must be a combination of these nine counterfactual outcomes.

Item (3) states that the distribution of pre-program variables X conditioned on each response-
type s € supp(S) is identified. This result enables to estimate the likelihood that a given family
belongs to each unobserved response-type. Let the pre-program variables of a family w, be X, =

x € supp(X). The probability that this family is of type s € supp(S) is given by:
P(X =x|S=s)P(S=s)
P(S = s|X = 1) — 4
where P(X = x) can be evaluated through observed data and P(S = s), P(X = z|S = s) are

identified according to Items (1) and (3) of T-3 respectively.

Remark 7.2. The Matriz A: of the decomposition By = CyAy;t € supp(T) in (9) indicates the
identified counterfactual outcomes. Consider the choice ty,. According to T-3, the identified coun-
terfactual outcomes are: E(Y (ty)|S = s1), E(Y (tn)|S = s7), and E(Y (t4)|S € {s4,85}). The rows
of Ay, in (10) indicate this selection of response-types. The first row takes value 1 for response-types
{84, 85}, the second row indicates s7 and the third row indicates s;.
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7.2 Interpreting the TOT Parameter

The treatment-on-the-treated parameter (TOT) is defined by the causal effect of being offered a
voucher divided by the voucher compliance rate.”” Let the compliance rate for the experimental
and Section 8 vouchers be respectively P(T = t;|Z = z.) and P(T € {t;,,t;}|Z = z3). Parameter
TOT (2, 2c) in (48) compares experimental families versus control families while TOT (zs, z.) in
(49) compares Section 8 versus control:

E(Y‘Z = Ze) - E(Y|Z = Zc)
PT=tZ=2)
EY|Z=2)—-EY|Z = z.)
P(T € {tm,t1}|1Z = 25)

TOT(z, z.)

(48)

TOT(zs, 2.) = (49)

Lemma L-5 expresses the TOT parameters in terms of neighborhood effects.

Lemma L-5. Response matrix R in L-3 implies that:

TOT(ZE,ZC) _ (E(Y(tl) — Y(th)|S S {34,35}) P(S (S {34735}) + E(Y(tl) — Y(tm)\S = 36) P(S = 36))

P(S € {s4,85,56})
. (1 — P(S =s3|S € {53,34,35736})) (50)
E(Y (tm) =Y (tn)|S € {84,87}) P(S € {84,87}) + E(Y(t;) =Y (tn)|S = s5) P(S = 35)>
P(S € {s4,87,85})
(1= P(S = 55|S € {s2,84,57,85})). (51)

TOT (25, z,) = (

Proof. See Appendix A.9. O

L-5 reveal that the TOT parameters evaluate a mixture neighborhood effects times a condi-
tional response-type probability. The first term of TOT(z, z.) in (50) is a weighted average of
two neighborhood causal effects: (1) the outcome effect of low versus high poverty neighborhoods,
ie. Y(t;) — Y (tp), for response-types 84, s5; and (2) low versus medium poverty neighborhoods, i.e.
Y (t;) = Y (tm,), for the response-type s¢. The second term is always between 0 and 1. The larger the
share of low-poverty always-takers (s3), the smaller the TOT (2, z.) parameter. The first term of
TOT(zg, z.) in (51) is also a weighted average of two neighborhood effects — medium (t,,) versus
high (t5) for s4, s7 and low (¢;) versus high (¢;,) for s5. The second term is a conditional probability:

the larger the share of medium-poverty always-takers (s2), the smaller the TOT(zs, z.) parameter.

8 Estimation Methods

Monotonic incentives 3 enables to evaluate causal parameters using well-known econometric tools.
This section shows that each identified counterfactual outcome can be estimated by a Two-stage
Least Squares (2SLS) regression using a suitable data transformation. This result arises from
the Nested Property P-2. Furthermore, response-type probabilities can be estimated by a Linear
Probability Model (LPM) that uses binary matrices By;t € supp(T') as covariates. This result

22Gee Appendix B for a discussion on the treatment-on-the-treated parameter.
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stems from a rank property of matrix Bp in (34). A similar regression is employed to estimate the

distribution of pre-program variables conditioned on response-types.

8.1 Revisiting the Two-stage Least Squares Method

Since the seminal papers of Theil (1953, 1958), economists have used the Two-stage Least Squares
estimator (2SLS) to evaluate causal effects of endogenous variables. Unordered monotonicity offers
a novel application of this well-known method.

Recall that ¥;(z) denotes the set of response-types that take value ¢ when in instrument is set
to z. Property P-2 states that sets ¥;(z); 2z € supp(Z) are nested, that is, for any ¢ € supp(T)
and any z,z’ € supp(Z), we have that X,(z) C Xy, (2/) or 3(2') C 34, (2) holds. For example, we
have that ¥, (z.) = {s1, 84, 85,87} C {581,857} = X4, (2¢) and thereby 3, (2.) \ X, (z¢) = {54, 85}
This property, combined with equation (28), enables to identify the counterfactual outcome Y (¢3)
conditioned on the response-types in ¥y, (2.) \ ¥y, (2¢) as ratio of difference-in-means:

E(Y1T = ty)|Z = 2) — BE(Y1[T = t]|Z = 2.)  E(Y(t)|S = s4)P(S = 84) + E(Y (t)|S = s5)P(S = s5)
EQAT =t4]|Z = 20) — EQUT = t]|Z = 22) P(S = s4) + P(S = s5)
= B(Y(t)IS € 4, () \ S, (20)).

Lemma L-6 exploit the fact that Property P-2 applies to any choice and any pair of instrumental

values.

Lemma L-6. If unordered monotonicity holds, then for any ¢ € supp(7’) and any values 2/, z €
supp(Z) such that 0 < P(T = t|Z = 2') < P(T = t|Z = z), we have that E(Y (t)|S € X:(2)\ X¢(2'))
and P(S € 3i(z) \ X¢(2')) are identified and can be evaluated by:

E(Y1T =t]|Z =2)— E(Y1[T = t,]|Z = %)

and E(Y (t)|S € Z4(2) \ Zi(2)) = FAT =7 =2) - BAT =f|Z =) (52)
P(S eXi()\Z(2) = EQAT =t)|Z =2) — E(U[T =t]|Z = 2). (53)
Proof. See Appendix A.10. O

The ratio in the left-hand side of Equation (52) can be estimated by a 2SLS regression that sets
the binary indicator D; = 1[T = t]| as endogenous variable, the interaction Y - D; as the outcome
and uses the indicators 1[Z = z| and 1[Z = 2’| as instrumental variables. Theorem T-4 describes

this procedure:

Theorem T-4. Let the 2SLS regression in (54)—(55) where the instrumental variables consist of
two binary indicators 1[Z = z],1[Z = 2'], the choice indicator Dy plays the role of the endogenous
variable and the second stage that uses Dy -Y as dependent variable:

First Stage Dy =7y, - 1[Zy = 2| + 72 - 1[Zy = 2] + €w.D (54)
Second Stage Yy, - Dy =K+ - Dy + €,y (55)

If unordered monotonicity (13) hold, then for any t € supp(T') and any two values z, z' € supp(Z),
the estimator B evaluates E(Y (t)|S € B¢(2) ® B¢(2)), where @ denotes set symmetric difference.”’

*The symmetric difference between two sets A, B is defined by A® B = (A\ B) U (B\ A). If A O B then
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Proof. See Appendix A.11. O

Ezample 8.1. Consider the estimation of the counterfactual outcome E(Y (¢,)|S € {s4,ss5}). By
checking the response matrix L-3, we observe that: (1) response-types si, sS4, S5, 87 take choice
value tj, under z.; and (2) response-types si, s7 take choice value ¢, under z.. The set difference
is given by X, (zc) \ X, (2e) = {s4,ss5}. Thus, according to T-4, E(Y (¢,)|S € {s4,s5}) can be
estimated by the following steps:

1. Generate two instrumental variable indicators: (1) 1[Z,, = z.] that takes value 1 if family w
is assigned to z; and (2) 1[Z,, = z¢| that takes value 1 if family w is assigned to z.

2. Generate the choice indicator Dy, ., that takes value 1 if family w chooses T, = t,.

3. Generate the interaction variable Y, - Dy, ., that multiplies the choice indicator Dy, ., with
the outcome Y, for each family w.

4. Perform a 2SLS regression of the interaction variable Y, - Dy, ., on a constant term and on
the choice indicator Dy, ., using the Z-indicators as instrumental variables.

Appendix O describes a generalized version of this 2SLS estimator that controls for baseline vari-
ables and allows for a weighting matrix.

Table 9 lists the counterfactual outcome means estimated by the 2SLS regression of T-4.
The counterfactual outcome means for always-takes si,S2,s3 can be evaluated by least-square
regressions that exploit the following equalities: E(Y (t3)|S = s1) = EY|T = t),Z = z3),
E(Y (tm)|S = 82) = E(Y|T = ty, Z = 2¢), and E(Y (;)|S = 83) = EY|T =t;, Z = z.).**

Table 9: Two-stage Least Square Estimation for Identified Parameters

Data Transformations
Endogenous Variables Dependent Variable Instrumental Variable Identified Parameters
Choice Indicator Outcome Interaction IV Indicators
1Z =2 1[Z =2zs] | EY(tn)|S € {54, s5,57})
Dy, = 1T =t Dy, Y 1Z=2] 1Z=z] | E(Y(tn)|S € {s4,55})
1[Z = Zg] ].[Z = Ze] E(Y(th)|S = 87)
1Z =2 1[Z =2zs] | EY (tm)|S € {s4,57})
D;, =1[T = ty] D, Y 1Z =2 1]Z =2z | E(Y(tm)|S = s6)
1[Z =23) 1[Z =2z | E(Y(tm)|S € {54, s6,57})
1Z=2] 1[Z=2z] | EY(t)|S = s5)
Dtl = l[T = tl] Dtl Y 1[Z = Zc] l[Z = Ze] E(Y(tl”S S {54,85,86})
1[Z =z5) 1 Z==z2] | E(Y(t)|S € {54,56})

This table describes the counterfactual means estimated by 2SLS procedure in T-4. The first stage estimates uses two IV
indicators (columns 3 and 4) for instrumental values and a choice indicator (column 1) as endogenous variable. The second
stage uses the interaction of the outcome and the choice indicator (columns 2) as dependent variable. The 2SLS regression
evaluates the counterfactual expectation E(Y (¢)|S € £¢(z)AX¢(2’)) as described in T-4 (column 5).

A@® B = A\ B. Note that the first stage does not has an intercept while the second stage has.
24Counterfactual outcome means for the always-takes s1, s2, 83 can also be evaluated by the 2SLS in T-4 that uses
single instrumental value indicator in (54) and suppresses the constant in (55).
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8.2 Estimating Response-type Probabilities and Pre-program Variables

The response-type probabilities can be nonparametric estimated using Equation (36), i.e. Py =
Bp - Pg. If matrix Bp in (34) has full column-rank, then response-type probabilities are point
identified and can be estimated by Pg = B;PZ, where B; is the Moore-Penrose pseudo-inverse
of Bp and the vector of propensity scores Pz can be obtained by its respective sample means.
Moreover, under full column-rank, the pseudo-inverse of Bp is given by B;ﬁ = (BpB p)_lB},
therefore the response-type probabilities are identified by:

Bp full column-rank = Pg = (B»Bp) 'BpPy. (56)
Equation (56) can be interpreted as an OLS estimator that uses propensity scores Py as a dependent
variable and the columns of binary matrix Bp as covariates. Lemma L-7 shows that Response-type

probabilities can be estimated by a linear regression that mirrors equation (56).

Lemma L-7. Let R be a response matrix of dimension N7 X Ng whose elements take values in
supp(T") = {t1,...,tn, } and Bp be the matrix in (34) that stacks binary matrices B; = 1[R =
t];t € supp(T). If Bp has full column-rank then the vector of response-type probabilities Pg can
be nonparametrically estimated by the parameter 3 of the following Least Squares Regression:

Dy, = BB + €, across all ¢t € supp(T), (57)

where Dy, = 1[T,, = t];t € {tn,tm, 1} is the binary indicator whether family w chooses neighbor-
hood t, and By, = B;[Z,,, | denotes the row of matrix B, associated with the instrumental value
Z, € {zc, 28, z¢ } assigned to family w.

Proof. See Appendix A.12. O

The regression in Lemma L-7 stacks the data across possible choice values and resembles a
Seemingly Unrelated Regression (SUR) on the indicator D, on By, across t € {t;,tm,tn}. To
clarify, let Dy o = [Diw;w € Q] be the vector that stacks indicators Dy, across the families in
the sample. Let Do = [D} o, D} o, D} o]’ be the vector that stacks D;q across neighborhood
choices tp,tm,t;. In the same fashion, matrix B; o = [By;w € ] stacks By, across all families
and Bg = [B} o, B o, Bj ol stacks matrices B; o across neighborhood choices. The estimator of
response-type probabilities is given by Pg = (B,QBQ)il B, Dq, and the estimated probabilities are
identical to the ones generated by replacing the propensity scores in (36) by its respective sample
means.”’

Item 3 of T-3 states that the distribution of pre-program variable conditioned on response-types
is identified. The identification also arises from the fact that matrix Bp has full column-rank and its
estimation can be achieved by a linear regression closely related to Lemma L-7. The estimation of
the expected value of pre-program variables conditioned on response-types E(X|S = s;);j=1,..,7
is obtained by parameter 8 in regression (57) by replacing the dependent variable Dy ,, for X, - Dy,

and the exploratory variable By, for By, - 135 See Appendix A.13 for a proof.

25The estimated probabilities always sum to one. However, the method does not impose that the probabilities are
positive.
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9 Addressing the Problem of Partial Identification

Theorem T-3 lists nine counterfactual outcomes that are nonparamterically identified. Six of
those are conditioned on a single response-type, while remaining three are conditioned on two
response-types. This entails a partial identification problem. For instance, E(Y (¢;)|S € {s4,s6})
is identified but it cannot be disentangled into E(Y (¢;)|S = s4) and E(Y (t;)|S = sg) without
additional assumptions. This partial identification problem is typical to discrete instruments, which,
in general, cannot identify the average treatment effects (AT E) without additional assumptions.?®

Recently, Brinch, Mogstad, and Wiswall (2017); Kline and Walters (2017); Mogstad, Andres,
and Torgovitsky (2017); Mogstad and Torgovitsky (2018) have studied the problem of assessing
ATF in binary choice models with discrete instruments. Their methods build on the Local Instru-
mental Variables (LIV) model of Heckman and Vytlacil (1999). The LIV model expresses ATE as

an integral of the marginal treatment effect (MTFE) as written below:
1
ATE = / MTE()dv such that MTE(v) = E(Y(t) — Y (to)|V = v), (58)
0

where t1,ty denotes the values of the binary choice T' and V' ~ Unif[0, 1] stands for a confounding
variable that causes the choice T" and the outcome Y. Continuous instruments over the full support
enables the identification of the MT E(v) function for v in the unit interval. Thereby the integral
f; MTE(v)dv is also identified over any interval [a,b] C [0, 1], and, in particular, ATE is identi-
fied. Discrete instruments, on the other hand, identify the integral fab MTE(v)dv only for discrete
intervals and therefore AT'FE is not identified.

Current literature uses extrapolations of the M T E function to overcome the limitations posed
by discrete instruments. I apply the main ideas of this literature to a slight distinct setting. Instead
of a binary treatment, I investigate the case of multiple choices. I do not seek to assess ATE, but
simply to disentangle the identified counterfactual outcomes that are conditioned in two response-
types. This is obtained via interpolation instead of extrapolation.

Section 9.1 extends the Local Instrumental Variables (LIV) of Heckman and Vytlacil (1999) to
the case of multiple choices. To do so, I exploit Lemma L-6 and the Separability Property P-4.
Section 9.2 explains the identification problems that arises when we migrate from the binary choice
model to the case of multiple choices. Section 9.3 exploits the Lonesum Property P-3 to solve these

additional identification problems.

9.1 Marginal Effects Under Unordered Monotonicity

This section builds on Heckman and Vytlacil (1999) to the examine multiple choice models under

unordered monotonicity.?” The Separability Property P-4 states that the choice indicator can be

26 An exception occurs when full compliance holds. For instance, if there exist instrumental values 2o, z1 € supp(Z)
and treatment choices t1,to € supp(7T) such that P(T = t1|Z = z1) = 1 and P(T = t9|Z = z) = 1, then
E(Y (t1) — Y(to)) is identified by E(Y|Z = z1) — E(Y|Z = z).

27See Appendix K for a review of the LIV model for the case of binary choices.
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expressed by a separable equation. This property is restated below:

Dy = 1[pi(Z) > n(V)] = 1[E,o(9i(2)) > Fryvy(m(V))] = 1[P, > Uy, (59)
where variables P, U; are transformations of Z, (V') defined by:
P(Z) = Fr,v)(pi(Z)) and U(V) = Fr, (v ((V)), (60)

where F, (y(-) denotes the CDF of (V). Two properties of Uy, P, are that U; has a uniform
distribution Uy ~ Unif[0,1] for an absolutely continuous 74(V') and that P, 1L (U, Y (t)) due
to Z 1L (V,Y(t)) of (25). These two properties imply that P;(Z) in (60) plays the role of the
propensity score, as shown below:

P(T=tZ=z2) = E(D{|Z==2) = EA[P(Z) > U]|Z =2) = P(P(2) >U;) = Pi(z), (61)
where the third equality is due to P, 1L U; and the last equality is due to uniform distribution
of U;. Consider the instrumental value z € supp(Z) which correspond to the propensity score
P(T =t|Z = z) = p. Thus the expectation E(Y - Dy|Z = z) can be stated as E(Y - Di|P, = p) as
expressed by the following equations:

E(y - D,|P, :p) - E(Y(t) [P, > U]|P, :p) = E(Y(t) fp > Ut]) - /OPE(Y(t)|Ut = u)du. (62)

The first equality in (62) uses separability (18), the second is due to P; 1L (Y'(¢),U;) and the last
one is due to uniformity of U;. A consequence of equation (62) is that the counterfactual outcome

mean F(Y (t)) can be identified by the derivative of the observed outcome w.r.t. the propensity

score P :

Theorem T-5. Let P, be the propensity score of choice t € supp(T') and E(Y - Dy| Py = p) be a.e.
differentiable w.r.t. to p € [0, 1]. If unordered monotonicity holds, then E(Y (¢)|U; = u) is identified
for w at value p by E(Y (t)|U; = p) = OE(Y - Dy|P; = p)/Op. Moreover, if E(Y - Dy|P; = p) is
differentiable for all p € [0,1] (full support) then the average counterfactual outcomes E (Y (t)) can
be evaluated by:

aE(Y - D,|P, :p)
dp

1
E(Y(t) = /0 E(Y()|U; = u)du, where E(Y (¢)|U; = u) = (63)

Proof. See Appendix A.14. O

T-5 states that if the instrument Z ensures enough variation around P;(Z) = u, then E(Y (¢)|U; =
u) is identified. If Z ensures enough variation over the full support of P,(Z), then E(Y (t)|U; = u)
is identified for all u € [0, 1] and E(Y (¢)) is obtained by integrating E(Y (¢)|U; = u) over the unity
interval.?®

The primary feature of T-5 is that the identification of E(Y (t)) depends only on the propensity

score of choice ¢ and not on the propensity scores of remaining choices.

Remark 9.1. The recent work of Lee and Salanié (2018) offers substantial contributions to the
literature on the identification of counterfactual outcomes in multivalued treatment models. They
investigate a general IV setting with Nt treatment choices that are determined by an arbitrary set

28In particular, if E(Y - D;|P; = p) is expressed by a polynomial E(Y - D;|P; = p) = Zf:l Bt - p*, then the
counterfactual outcome expectation E(Y (1)) is given by E(Y () = S r_, Brs-
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separable equations. Unordered monotonicity consists of a subfamily of this class of models. Lee
and Salanié (2018) show that the identification of a counterfactual outcome mean E(Y (t)) generally
requires a Np-th order derivative across the propensity scores of all N7 choices. T-5 states that in
the particular case of unordered monotonicity, the identification of a counterfactual outcome mean
E(Y(t)) requires only a first-order derivative w.r.t the propensity score of choice t. This facilities
the estimation of causal effects as it avoids the evaluation of higher order derivatives that can be
empirically cumbersome.

Discrete instruments do not render the identification of E(Y (¢)|U; = u) as the support of Z
is finite. Consider two instrumental values z,z’ € supp(Z) corresponding to propensity scores
P,(z) = p, P,(z') = p/ for choice t where p > p'. According to equation (62), we have that:

E(Y - Di|P =p) —E(Y - Di|P=p) _ [ E(Y (6)|Us = u)du
p—p p—r

=EY@)|p<U <p). (64)

~

Lemma L-6 employs the Nested Property P-4 to identify the counterfactual outcome Y (¢) condi-
tioned on the response-types in X(z) \ X¢(z'). Lemma L-6 can be restated using (64) as:

_ EMIT =12 Z) E(Y1 [ —th]|Z=Z’)
_E(YDt|Pt: t Z))—E(YDt|Pt— t( /))
= P(5)~ PA(2) 00
P BY@IU = wdu— [ BY(0)|U; = wdu -
B Pi(z) — Pi(2')

fP’((ZZ,)) EY@)|U; = u)du

Piz) = Pi(?) o

= g:(Pi(2'), P(2)), such that P(z") < Pi(z). (69)

Equation (68) states that each identified counterfactual outcome E(Y (¢)|S € 3¢(2) \ X¢(2')) can
be expressed as an integral of E(Y (¢)|U; = u) over the interval [P,(2’), P,(z)] which depends only
on the propensity scores of choice ¢t. Equation (69) simply emphasizes that the integral in (68) can

be expressed as a function of two probabilities: P(z’) and Pj(2).

9.2 Understanding the Problem of Partial Identification

Equations (64)—(69) are useful to characterize the identification problem of disentangling the coun-
terfactual outcomes. Consider the case of E(Y (¢;)|.S € {s4, s6}). This counterfactual outcome can
also be expressed as E(Y (¢;)|S € Xt,(z) \ X¢,(23)) and, according to (68), it can be expressed as
an integral of E(Y (t)|U; = u)du over the interval [P}, (23), P, (z¢)]. This integral can be represented
as a function gtl(-, ) evaluated at the propensity score boundaries, that is, gy (Ptl(28)7ptl (ze)).

Equation (70) summarizes this information.
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Identified Counterfactual T-3 As in Equation (69)

Py .

(ze)
fPtl (28) E(Y(tl)|Utl:u)du

B(Y ()| € {51, 56}) = BY (1)|S € Sy (20) \ S (25)) = 250 pi— = o (P (2), Pu(20))

By Lemma L-6 & Equation (64)

(70)
Our goal is to disentangle E(Y (¢;)|S € {s4, s6}) into E(Y (¢)|S = s4) and E(Y (t)|S = s6).
Under unordered monotonicity, the extended LIV model of Section 9.1 holds. This implies that
E(Y (t)|S = s4) and E(Y (#;)|S = s¢) can also be expressed as integrals of E(Y (t)|U; = u)du over
two contiguous and non-overlapping intervals. Moreover, the union of these two intervals must
be equal to [P} (23), P, (2¢)]. Otherwise stated, the problem of identifying E(Y (¢;)|S = s4) and
E(Y(t)|S = s¢) consists of determining the propensity score p;, € (P (zs), %, (2¢)) that splits
the interval [Py (23), Py, (z¢)] into two integration intervals [P (2s),p,] and [pj, P, (ze)] such that
g, (Ptl (z8), p;‘l) and gy, (pfl Py, (ze)) identify the targeted counterfactual outcomes. Notationally we
have that:

p;
_ fPill(ZS) E(Y(tl)|UtL == U)du

0 _ *
E(Y(#)|S =) By = o (Pu)ni) (71)
) @wawmmhzmm )
B(Y(1)|S = ") = AR = gu (i Puz0)), (72)
where (s',5") = (s4,56) or (s',8") = (s, 54). (73)

There are two identification challenges in equations (71)—(73) that must be overcome. The
first one is that the probability p; € (P (23), Py (zc)) is unknown. The second one is that even
if the probability p;, were known, an uncertainty exists as we cannot determine which of the
two intervals [Py (23),pf ], [P}, P, (2e)] identify each of the counterfactual outcomes E(Y (#;)|S =
s4), E(Y (t;)|S = s¢). Next section explains how the Lonesum Property P-3 helps in solving both

identification challenges.

9.3 Solving the Problem of Partial Identification

The partial identification problem of discrete instruments stems from the lack of variability of the
instrumental variable. The matrices in (74) help to illustrate this fact. The first matrix lists the
response-types in the response-matrix R in which ¢; appears. Those are s3, s4, S5, Sg. The second
matrix indicates the ¢;-choices. The matrix consists of the columns s3, s4, 85, s¢ of By,. The third

matrix reorders these columns into a triangular matrix.
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83 84 S5 S6 83 S84 85 36 83 S5 84  Se
Zc t th th  tm 1 0 0 0 1 0 0 0 2t (z¢) = {s3}
wm |t tm t tm| =1 0 1 0= |1 1 0 0| .. Si(zs)={s3 85} (74)
1 1 1 )={s

ze |ttt 4 S, (2e 3, 85,54, 56}

Selection of R Columns of By, Reordered B¢, Columns
The first row of the matrices in (74) correspond to the instrumental value z.. We observed that

under z., the response-type s3 is the only one that takes value ¢;. Under zg (second row) response-
types s3 and s5 take value t;. The difference of response-type sets between zg and z. is 3y (2g) \
Y4, (zc) = {ss5} and thereby E(Y(¢;)|S = s5) is identified (Lemma L-6). Partial identification
arises because the difference between response-type sets between zg and z is 3y (ze) \ Xy, (28) =
{84, 86}. Thereby E(Y (t;)|S € {s4, s¢}) is identified but not its counterparts E(Y (¢;)|S = s4) and
EY (t;)|S = s¢).

This identification problem would be solved if there were an instrumental value z* that bridges
the response-types between ¥ (zg) and ¥ (z.). Notationally it means that ¥ (zg) C 3y (2*) C
¥4, (28) such that the set differences 3y, (z.) \ X, (2*) and X4, (2*) \ X, (23) would render the response-
types s4 and sg. For these conditions to be satisfied, it must be the case that X, (2*) = {s3, 55, 54}
or Xy, (2*) = {ss, s5, S¢}. In summary, the additional variation z* of the instrument Z that enables
the identification of E(Y (¢;)|S = s4) and E(Y (¢;)|S = s¢) is such that response-types s3, s5 that
take value t; for z* (same for zg and z.) but either sg or s4 may take value ¢;. Matrix (75) illustrates

this condition by inserting a z*-row between the rows zg, z. of the response-types displayed in (74).

84-shift 8g-shift
83 S4 S5 S6 83 S4 S5 S6 83 S4 S5 S6
Zc tr th R tm 13 tp  th tm 1] th

28 t; tm 1 tm t tm ty tm t; tm t;

tm
= or 75
2* 6Tt 7 ot ot tm tltl (75)
Ze L2 TR T 7] 14/ 3] i 1 3] 7] 12 2]
New Instrument Value z* B¢, (2%) = {83, 85,84} S, (2*) = {s3, 55,56}
Unordered monotonicity holds Unordered monotonicity does not hold

Matrix (75) shows that the instrument change from zg to z. induces both the response-types
84, Sg to shift from ¢, to ¢;. The pseudo instrumental value z* bridges zg—z. by allowing for just
one shift. Some uncertainty exists as there are two possible cases: shifting the neighborhood choice
in s4 implies in ¢, (2*) = {s3, 85, 84} while shifting sg implies X¢, (2*) = {s3, s5, S6}. The Lonesum
Property P-3 solves this uncertainty by ruling out one of these cases.

The Lonesum Property P-3 prohibits the shift of the neighborhood choice in response-type sg.
The 2 x 2 sub-matrix generates by rows (z., z*) and columns (s4, sg) has t,, in its anti-diagonal but
there is no t,, in its diagonal, which violates P-3. On the other hand, Property P-3 holds for the
s4-shift. We then conclude that ¥4, (2*) = {s3, s5, s4}. This analysis solves the two identification

challenges posted in the previous section.
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The first challenge is to determine the probability p; that split the interval [P, (2s), I, (2e)]-
and sets the boundaries of the integration for E(Y (¢;)|.S = s4), E(Y (#;)|S = s¢). This probability
is given by the propensity score for z*, which is equal to the following response-type probabilities:

P, (z")=P(T=t|Z==2%")=P(S € %,(z%)) = P(S € {s3, s5,84}).
In the same token, we have that the propensity scores P, (2.), P, (2g) identify the following response-
types probabilities:
P, (z3) = P(S € X4,(23)) = P(S € {s3,55}) and P, (z.) = P(S € Xy,(z.)) = P(S € {s3, 85,54, 56}).
(76)
Therefore we have that P, (2*) € (P, (23), P;,(2¢)), as desired.

The second challenge refers to the uncertainty in assigning integration intervals to the counter-
factual outcomes. This uncertainty is resolved as Xy, (2*)\ Py, (28) = {s4} and Xy, (z¢)\ P, (2*) = {s6}-
Thereby E(Y (1;)|S = s4) is identified by integration over [Py, (23), P, (2*)], and E(Y (t;)|S = s4) by
integration over [P}, (2*), P, (z)], that is:

"GO By (1)U, = w)du
Ptl(ZS) i _ *
B ()| = s1) = =5 = gu(Pu(es) Pu(=")) (77)
fg’(ze Y (t)|Us, = u)du .
B (i)} = s5) = =g g = (Pu(), =), (78)
where Py, (z*) = P(S € {ss, 85, 84})- (79)

Figure 3 represents the identification of E(Y (£;)|S = s4) and E(Y (#;)|S = s¢) as a graph.
While P, (z.), P, (23) are obtained directly from observed data, P (z*) is not. However, P, (z*)
is identified as all response-type probabilities are identified (T-3) and it can be evaluated by L-
7. The values gy, (pj,, Py, (23)) and gy, (P, (ze), p;,) are obtained by the interpolation the function

I3 E(Y (t))|Uy, = u)du as discussed in the next section.
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Figure 3: Identification of Counterfactual Outcomes E(Y (¢;)|S = s4) and E(Y (¢;)|S = s¢)

EY (t)|U = u)

L EY(W)[S =s3)  E(Y(4)|S = ss5) E(Y (t)|S € {s4,56})
r R R

E(Y (t1)|S = s4) E(Y (t1)|S = s6)

— . o — gIEn— T —— 7 S = U
0| 0.2 0.4 0.6 0.8 1
Propensity Scores P(T=4|Z=2.) P(T=t|Z==z) P(T =t]Z = ze)
Response-type Prob. P(S = s3) P(S € {ss3,s5}) P(S € {ss3,s5,814}) P(S € {s3,s5,54,86})

This figure summarises the identification strategy to disentangle E(Y (¢;)|S € {s4, s6¢}) into E(Y (¢;)|S = s4) and E(Y (¢;)|S =
s6). The Extended LIV model (Section 9.1) shows that E(Y (¢;)|S € {s4, s¢}) can be expressed as an integral of E(Y (¢;)|Us, = u)
over and interval which depends only on the propensity scores of choice t;. This interval is given by [Py, (28), Pt (ze)] where
Py (z3) = P(T = t|Z = z8) and Py (ze) = P(T = t|Z = z¢). The Lonesum Property P-3 implies E(Y (t;)|S = s4) is
identified by integration of E(Y (t;)|Us, = u) over [Py, (28), Py, (2*)], and E(Y (t;)|S = s4) by integration of E(Y (¢)|U; = u)
over [Py, (2*), Py, (ze)], where Py, (zg8), Py, (ze) identify P(S = {s3,s5}), P(S = {s3,55,54,58}) and Py, (z*) is given by P(S =
{s3, 85, 84}) which is also identified (T-3).

The identification analysis that disentangles the counterfactual outcome E(Y (¢)|S € {s4,S6})
also applies to E(Y (tn)|S € {s4,s5}) and E(Y (t,,)|S € {s4, s7}). Table 10 focus on choice t; and
presents the identification formulas that disentangle E(Y (¢4)|S € {s4,85}) into E(Y (t4)|S = s4)
and E(Y(t;)|S = s5). Table 11 focus on choice t,, and presents the respective identification

equations.

Table 10: Identification Formulas for Counterfactual Means E(Y (¢,)|S = s4) and E(Y (t,)|S = s5)

Counterfactual Outcome Integral Representation  Function of Propensity Scores
Py, (zc)
E Y S B fp::(ZE) E(Y(th)|Uth:u)du . P P
(Y(tn)|S € {54, 85}) = P o= Pi, (22) = gip \ Pur(2¢), Pry, (2e)
f;fh(z ) E(Y (8)|Usy, =u)du
e — *
B ()|S = s1) = =gy = 9o, (i Po. ()
fp;;h “) B (1)U, =u)du )
(Y (t)|S = s5) = P = gu, (Pu(20). 97, )

where p;, = P(S € {s1,57,84}) € (Pth(ze),Pth (zc)>
because Py, (z.) = P(S € {s1,s7}) and P, (z.) = P(S € {s1, 87, 84, S5})
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Table 11: Identification Formulas for Counterfactual Means E(Y (t,,)|S = s4) and E(Y (t,,)|S = s7)

Counterfactual Outcome Integral Representation Function of Propensity Scores
S ) BV () Uty =u)du
B(Y (1|8 € {s1.87)) = nlip) T = (P (e9), Pr (20))

S o B0 () Vs =) .

B(Y (tn)|S = 51) = Sl = g1, (Pi,0s P (28))
S ) B (b0 Uty =u)du

E(Y(tn)|S =s7) = by P = 9t (Ptm (28)=P?m>

where pf = P(S € {s2,56,54}) € (Ptm (zc),Ptm(ZS))

because P;, (z.) = P(S € {s2,s86}) and P (z.) = P(S € {s2, S, S4, S7})

9.4 Estimating the Counterfactual Outcomes

Similar to Section 8.1, I show that the evaluation of the counterfactual outcome discussed in the
previous section can be achieved through simple econometric techniques. Indeed, all counterfactual
outcomes and causal effects of this paper are estimated by 2SLS regressions applied to particular
transformations of the observed data.

Theorem T-6 state that counterfactual outcome means can be estimated by a ratio of least
square estimates. The result is motivated by a control function approach that uses local polynomials
of the propensity score to correct for endogeneity.?” I adopt a slightly more general setting where
H(Z) is a function of the instrumental variable that would represent propensity scores in the
control function approach while A(H;) would represent the polynomial functions. Specifically,
let the instrument Z takes Nz values in {zi,...,Zn,} and choice T takes values Np values in
{t1,....,tn,}. For each t € supp(T'), let H¢(z) be any injection function H; : supp(Z) — R whose
image is denoted by hy; = Hy(2;);i = 1,..., Nz. Let A(h) = [A1(h), ..., )\Nz(h)]/ be any vector of Nz
linearly independent®’ real-valued functions. *! In this notation, the expectations E(Y - Dy|Z = z;)
and E(Dy|Z = z;) for i = 1,..., Nz can always be expressed as:

E(Y -Dy|Z = z) = E(Y - Dy|H(Z) = hii) = Ahei) Be, (80)
E(D[»‘Z = Zz') = E( Dt ‘Ht(Z) = ht,i) = )\(htvi)IOt, (81)

where 3, 0, are Nz-dimensional vectors determined by the unique solution of the linear system
generated by equations (80)—(81) across Nz instrumental values. Let D;,, be the choice indicator

for family w and A; o = A(H(Z)) be the Nz-dimensional vector X associated with family w.

29Gee Appendix N for the connection with the control function approach.

30By linearly independent I mean that the square matrix generated by concatenating vectors A(Hy(z;)) for the
t € {1,..., Nz} has full rank, that is to say that det([A(H¢(z1)), ..., A\(H:(2n,))]) # 0.

31 An example of function H;(Z) is the propensity score Pi(z); z € supp(Z) defined by Pi(z) = P(D;|Z = z) where
D, = 1|T = t] is a treatment indicator. An example of function A(h) for Nz = 3 is the third degree polynomial
A(h) = [h,h*, h%].
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Theorem T-6. Lett € supp(T) be any treatment choice and z,z" € supp(Z) be two instru-
mental values. If unordered monotonicity (13) holds, then the counterfactual outcome Ay(z,2") =
E(Y (t)|S € Xi(2) @ X¢(2')) is identified (L-6) and can be estimated by:**

o = (M) = (1)) B )
T (- ) 8

where hy = Hy(z), hy = Hy(2') and B\t, é\t are the estimates of the following least squares regressions:
Dt,w = At,wot + €w,D and Y, - Dt,w = At,wﬁt + €wy, (83)
where €,y , €, p denote error terms.

Proof. See Appendix A.15. O

The estimator (82) can be understood as a generalized LATE estimator for unordered mono-
tonicity. The numerator of (82) estimates the expected difference E(Y-Dy|Z = z)—E(Y -Dy|Z = 2')
while the numerator estimates the propensity score difference P(T = t|Z = z) — P(T = t|Z = 7).

Remark 9.2. T-6 characterizes a broad class of estimators for multiple choice models in which
unordered monotonicity holds. The estimator applies to all identified counterfactual outcomes. It
also applies to any number of choices and for an arbitrary number of instrumental values. In
particular, it applies to binary choice models with categorical instrumental variables examined in
Brinch et al. (2017) and Kline and Walters (2017).

Remark 9.3. T-6 applies to any choice of injection function Hy(z) and any choice of linearly
independent functions in A(h). Moreover, estimates A¢(z,2') are numerically the same regardless
of the choice of Hy(z) or A(h) (see See Appendiz A.15 for proof). Estimates Ay(z,2') are also
numerically identical to the 25LS estimates in T-4.

Remark 9.4 . FEstimator (82) can be expressed in terms of known matrices By, Ay, Cy and it can
be understood as the empirical counterpart of the identifying equations (38) of Section 7.1 (see
Appendiz M). The estimator can also be interpreted as an example of the control function approach
(see Appendiz N).

Remark 9.5. Theorem T-7 in Appendix P.2 shows that the counterfactual outcomes in (85)—(86)
can be evaluated by a Three Stage Least Square Regression (3SLS) that fist performs a prediction of
instrumental variable indicators which are in turn used as the instrumental variable of an standard
28LS regression.

Estimator T-6 is useful to evaluate the counterfactual outcomes of previous section. Let
[ht, s Pt, 255 Pty 2.]" be the vector of propensity scores estimates for [Py, (zc), P, (23), Py, (ze)] and
let A(h) = [A1(h), A2(h), A3(h)] be any selection of linearly independent functions. The counter-
factual E(Y (¢;)|S € {s4,s6}) can be written as E(Y (¢;)|S € X¢,(z) \ Xy,(28)) and, according to

32 As mention in T-4, ¥;(z) ® 3:(z’) stands for the symmetric difference between sets ¥;(z) and T;(2'). If Pi(z) >
P.(2') then X¢(2) @ X4 (2') yields Xi(2) \ Te(2'). If Pi(2) < Pi(2') then Z¢(2) @ Zi(2') = Be(2") \ Te(2).
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T-6,

()‘(htl,ze) - A(htl,28)> //é\tl

()‘(htz,ze) - A(hthzs)) Otl
where hy, . = P(T =4|Z = zg8) = P(S € {s3,85}) < ht, .. = P(T =4|Z = z.) = P(S € {s3, 55,54, S6})-

E(Y (t)|S € {s4,56}) is estimated by

: (84)

Equation (76) states that P, (z3) = P(S € {s3,s5}), P;,(ze) = P(S € {s3,85,84,86}) and the
identification of E(Y (¢;)|S = s4) and E(Y (t;)|S = s¢) hinges on using propensity score P, (z*) =
P(S € {s3,85,84}) to evaluate equations (77)-(78). Let hj be the estimate of response-type

probability P(S € {ss, 5, s4}) obtained from Pg of L-7. Thus we can use interpolation to evaluate
equations (77)—(78) as:

(A(h?, ) - A(htz,zs)> /Ié\tl

E(Y(t;)|S = s4) is estimated by — (85)
(A7) = Alhe, =) B,
where hy, ., = P(T = t;|Z = 23) = P(S € {s3,85}) < hj, = P(S € {s3,55,54})
/o
(Alhi =) = A7) B
E(Y(t)|S = sg) is estimated by (86)

7
(Ahe =) = A(h7)) B,
where hy, = P(S € {s3,55,84}) < hy .. = P(T =14|Z = z.) = P(S € {s3,55,54,56})-

The estimation procedure that evaluates the counterfactual outcomes (77)—(78) for ¢; in also
applies to t, and t,, whose identification equations are displayed in Table 10 and Table 11 re-
spectively. Appendix P.3 provides a detailed description of estimation procedures that explore the

variation of pre-program variables and accounts for weighting schemes of the observed data.
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10 A Summary of Theoretical Contributions

Figure 4 organizes the theoretical contributions of this paper in a comprehensible diagram. Section 4
uses an economic model to examine the counterfactual choices that MTO families can take. The
design of the intervention determines the incentive matrix L, that is combined with economic
assumptions to generate choice restrictions. Those, in turn, produce the response matrix R. A
key property of the MTO incentive matrix is that it presents monotonic incentives 4.1, in which a
change in the instrument induce incentives towards the same direction for all choices.

All identification and estimation results stem from the properties of the response matrix. Those
are revealed in Section 5 and are termed as: Binary Decomposition (9), Monotonicity (P-1),
Nested Choices (P-2), Lonesum (P-3), and Separability (P-4). These properties are shared by
social experiments characterized by monotonic incentives.

Section 7 transcribes the economic model into a causal model. The response matrix R is
expressed in terms of binary matrices By (Section 5.1) which are used to equate observed quantities
and unobserved causal parameters (equations (35)—(36) in Section 7.1). These matrices are also
used to examine the TOT parameter (Section 7.2) and to estimate response-type probabilities (L-7
in Section 8.2). Binary matrices B; are decomposed into matrices C; and A;. These matrices are
used to characterize a necessary and sufficient condition for unordered monotonicity to hold (T-1)
and to yield a general identification formula (T-2 in Section 7.1).

Unordered Monotonicity implies an equivalence between nine monotonicity inequalities and
the seven choice restrictions generated by the revealed preference analysis (Property P-1). This
equivalence is used to assess assumptions on choice behavior (Section 6). Identification formula
T-2 and the nested property P-2 are used to show that each identified counterfactual outcome can
be estimated via 2SLS (L-6 and T-4 in Section 8.1).

Some counterfactual outcomes are only partially identified. This problem is addressed in Sec-
tion 9. The separability property P-4 is used to extend the LIV model to the case of multiple
choices (T-5 in Section 9.1) while the lonesum Property P-3 enables to point-identify counter-
factual outcome means via interpolation (T-6). Causal effects can be evaluated by 2SLS under a

suitable transformation of observed data (Appendix P).

44



Figure 4: Summary of Identification and Estimation Results
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11 Empirical Results

This section applies the method described in previous sections to the MTO data. Section 8 shows
that all causal parameters can be evaluated by standard econometric tools when proper data trans-
formations are applied. Figure 5 displays the estimates of response-type probabilities which are
evaluated by a linear probability model. A similar model is used to estimate the means of pre-
program variables conditioned on response-types of Table 12. Figure 6 presents descriptive statistics
of three main labor market outcomes: income, employment and the likelihood of breaking out of
poverty. Figures 7-8 display the counterfactual outcome estimates for all response-types and for
each outcome. Figure 10 presents the estimation of neighborhood causal effects for the outcomes.
Counterfactual outcomes and treatment effects are estimated by 2SLS regressions discussed in
Section 8.1 and 9.

All estimations are conditioned on site and on baseline pre-program variables regarding family

characteristics, mobility, neighborhood safety and neighborhood satisfaction.??

All estimations
account for the adult survey weights of the MTO Interim Impacts Evaluation (2003). Appendix O
provides detailed information on the estimation of response-type probabilities and the expected
value of pre-program variables conditioned on response-types. Appendix P describe the procedures

regarding the estimation of causal effects.

Response-type Probabilities

Figure 5 presents the response-type estimates.®* Almost half of the families are always-takes

(P(S € {s1, 82,53}) = 0.46) that do not change their neighborhood choice regardless of the voucher
assignment. In particular, one in each three families remain on high-poverty neighborhood (]AD (S =
s1) = 0.35) regardless of the voucher assignment. These consists of families for whom MTO
incentives are not sufficient to incite neighborhood relocation. The second most frequent family-
type is P(S = s4) = 0.31 which account to about a third of families. Response-type s4 comprises
the most responsive families, those who choose high, medium and low poverty neighborhoods if
the family is assigned to control, Section 8 and Experimental vouchers respectively. The remaining
compliers 85, Sg, 87 account to 23.5% of families. Some variation exists across cities. In particular,

about half of families in Los Angeles are classified as s4.
Baseline Variables by Response-types

MTO vouchers have no impact on the neighborhood choice of always-taker families (s1, s2, 83),

which account for almost half of all eligible families. If family response-types were observed, a

33Family characteristics: if resident ever married, if has no teenagers and if has a disabled family member. Mobility:
if participant had applied for a Section 8, if has moved at least 3 times within 5 years previous to the intervention;
Neighborhood safety: if being beaten/assaulted in the past 6 months (prior to intervention), if has moved in the past
due to gangs, and if feels unsafe at night. Neighborhood satisfaction: reported no friends, has watched for neighbor’s
children, if has no family in the neighborhood, if chats with neighbor, and neighborhood dissatisfaction index.

34 Appendix 0.3 describes the estimation of response-type probabilities in detail.
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Figure 5: Response-type Probabilities
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Baltimore 0.21 0.09 0.04 0.27 0.12 0.13 0.16
(s.d) (0.03) (0.02) (0.03) (0.04) (0.03) (0.03) (0.03)
Boston 0.43 0.07 0.04 0.29 0.05 0.11 0.01
(s.d) (0.02) (0.02) (0.02) (0.03) (0.03) (0.03) (0.03)
Chicago 0.27 0.09 0.02 0.20 0.05 0.07 0.28
(s.d) (0.02) (0.02) (0.02) (0.03) (0.03) (0.03) (0.03)
Los Angeles 0.13 0.04 0.02 0.45 0.09 0.10 0.17
(s.d) (0.02) (0.02) (0.02) (0.03) (0.03) (0.03) (0.03)
New York 0.49 0.06 0.04 0.34 0.06 0.01 0.00
(s.d) (0.02) (0.02) (0.02) (0.03) (0.03) (0.02) (0.02)
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The first panel of the figure lists the counterfactual choices of each response-types. The second panel displays the estimated
probabilities of the response-types according to Section 8.2. The last panes provides the response-type probabilities by city.
Sample sizes are 633, 957, 889, 676, 1072 respectively. All estimations account for the person-level weight for adult survey of the
interim analyses as described in the MTO Interim Impacts Evaluation manual, 2003, Appendix B. Estimates are conditional
on site and baseline variables regarding family characteristics, mobility, neighborhood safety and satisfaction. [1] Family
Characteristics: if resident ever married, if has no teenagers and if has a disable family member; [2] Mobility: applied for a
Section 8, if has moved at least 3 times within 5 years; [3] Neighborhood safety: if being beaten/assaulted in the past 6 months
(prior to intervention), if has moved in the past due to gangs, and if feels unsafe at night. [4] Neighborhood satisfaction:
reported no friends, has watched for neighbor’s children, if has no family in the neighborhood, if chats with neighbor, and
neighborhood dissatisfaction index. See Appendix O.3 for detailed description of the estimation procedure.
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policy maker could improve the efficiency of the MTO intervention by targeting only the families
who respond to the MTO incentives. Those are the compliers s4, S5, S¢ and s7.

Unfortunately response-types are not observed. Nevertheless the distribution of pre-program
variables conditioned on response-types is identified (T-3). Thus it is possible to estimate the like-
lihood that a family is of a particular response-type type conditioned on its baseline characteristics
at the onset of the intervention (Section 7.1). This information in useful in designing an eligibility
criteria toward more efficient interventions.?’

It is also possible to investigate how family baseline characteristics vary by response-type. Ta-
ble 12 presents the means of selected pre-program variables conditioned on response-types.®® The
first variable measures education, the second assesses if the family has a car, the third indicates
if the family had applied to housing welfare previously and the last question inquires if the fam-
ily believe that it is able to move from housing projects regardless of public assistance. These
variables are proxies for family poverty. A clear pattern arises among always-takes: si-families
are most disadvantaged, followed by so-families and then by ss-families. These are the families
that choose high, medium and low-poverty neighborhood respectively. Among compliers, the most
disadvantaged families are s; which choose to relocate to a low-poverty neighborhood whenever
subsidy is available.

The next four questions assess family behavior and composition. Families that always remain
in high-poverty neighborhoods (s1) are the ones most likely to have a disable house member (27%
above baseline), most likely to have lived in the neighborhood for an extended period (14% above
baseline), and most likely to have teenagers (16% above baseline). In summary, those are families
who have less mobility and more ties to the community they live in. In constrast, families that are
most responsive to the voucher incentives (s4) are the ones who are less likely to have teenagers
as family members (20% below baseline) and families that always move to low-poverty neighbor-
hood (s3) are the ones less likely to chat with the neighbors during their stay at high-poverty
neighborhoods (43% below baseline).

The last four questions assess the reasons for moving from high poverty neighborhood. Always
takes s3 are most likely to move to low-poverty neighborhoods seeking better schools (58% above
baseline). The main reason for sg-families is gang activity (16% above baseline). These families are
also most likely to live in unsafe areas (17% above baseline) and are often victims of crime (22%

above baseline).
Outcome Means by Voucher and Neighborhood Choice

Figure 6 displays the conditional means of labor market outcomes surveyed at the interim
evaluation of MTO. The first outcome is the income of the head of the family in thousand dollars

per year. The second outcome is called breaking through poverty and indicates if the total household

35In particular, interventions could target compliers s4, 85, 8¢ and s or that increase the incentives for families
that are likely to be of type s;.
36 Appendix O.4 describes the estimation procedure for pre-program variables mean conditional on response-types.
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Table 12: Pre-program Variables Means by Response-types
Always-takes Compliers
Baseline S1 So S3 S4 S5 Sg 87

Completed high school 0.38 0.35 0.41 0.71 0.36 0.26 0.42 0.44
(s.d.) | (0.01) (0.02)  (0.10)  (0.24) | (0.04)  (0.16)  (0.12) (0.09)

% diff. from baseline - —7.5% 6.5% 87.1% —4.9% —278%  11.2% 15.2%
Car Owner 0.17 0.14 0.23 0.53 0.20 0.10 0.05 0.13
(s.d.) | (0.01) (0.02)  (0.07)  (0.17) | (0.03)  (0.11)  (0.08) (0.06)

% diff. from baseline - —-18.0%  38.1% 216.3% 21.6%  —40.8% —68.4% —22.6%
Applied for Section 87 0.42 0.43 0.35 0.18 0.41 0.73 0.47 0.31
(s.d.) | (0.01) (0.02)  (0.10)  (0.25) | (0.04)  (0.17)  (0.12) (0.09)

% diff. from baseline - 2.4% —-14.7% —57.1% | —-2.6% 75.9% 12.1% —26.1%
Prospective mover 0.46 0.36 0.55 0.78 0.53 0.31 0.50 0.51
(s.d.) | (0.01) (0.03)  (0.11)  (0.26) | (0.04)  (0.17)  (0.13) (0.10)
% diff. from baseline — —-22.6%  20.1% 70.0% 14.4%  —33.4% 7.8% 9.7%
Disable Household Member 0.16 0.21 0.16 0.15 0.16 0.19 0.12 0.08
(s.d.) | (0.01) (0.02)  (0.07)  (0.17) | (0.03)  (0.11)  (0.08)  (0.06)

% diff. from baseline - 26.6% —1.8% —7.4% —4.8% 13.5% —282%  —50.8%
Resident for 5 4+ yrs. 0.61 0.69 0.65 0.54 0.61 0.56 0.50 0.47
(s.d.) | (0.01) (0.03)  (0.11)  (0.28) | (0.05)  (0.19)  (0.14) (0.10)

% diff. from baseline - 13.7%  71%  —-11.7% | —0.6% —8.3% —18.1% —23.4%
No teens (ages 13-17) 0.61 0.51 0.63 0.58 0.73 0.58 0.59 0.61
(s.d.) | (0.01) (0.03)  (0.11)  (0.28) | (0.05)  (0.19)  (0.14) (0.10)
% diff. from baseline - -15.9% 2.3% —4.9% 19.7% —5.6% —3.4% 0.0%
Chat with neighbor 0.51 0.51 0.48 0.29 0.45 0.65 0.59 0.61
(s.d.) | (0.01) (0.03)  (0.11)  (0.27) | (0.04)  (0.18)  (0.13) (0.10)

% diff. from baseline - —-0.1% —53%  —425% | -11.3%  27.2% 15.9% 20.5%
Moved to seek schools 0.48 0.48 0.50 0.76 0.57 0.16 0.38 0.41
(s.d.) | (0.01) (0.03)  (0.11)  (0.26) | (0.04)  (0.17)  (0.13) (0.10)

% diff. from baseline - —0.7% 2.9% 57.5% 185%  —66.4% —20.6% —14.8%
Mowved due to gangs 0.77 0.73 0.71 0.63 0.78 0.80 0.89 0.81
(s.d.) | (0.01) (0.03)  (0.12)  (0.29) | (0.05)  (0.20)  (0.15) (0.11)
% diff. from baseline — —4.9% -79% —-18.1% 1.9% 4.3% 15.8% 5.9%
Unsafe at night 0.49 0.43 0.47 0.31 0.53 0.57 0.57 0.52

(s.d.) | (0.01) (0.03)  (0.11)  (0.26) | (0.04)  (0.18)  (0.13)  (0.10)
% diff. from baseline - —-12.7% -31% —36.4% 8.3% 17.2% 17.2% 5.9%
Victim last 6 months 0.42 0.41 0.30 0.46 0.43 0.51 0.44 0.36
(s.d.) | (0.01) (0.02)  (0.10)  (0.25) | (0.04)  (0.17)  (0.12) (0.09)

% diff. from baseline — —0.4% —26.7% 11.4% 4.2% 22.2% 4.8% —-13.9%

The first column lists pre-program variables surveyed at the intervention onset. The second column (baseline) presents the
variable mean across all response-types. The remaining seven columns present the variable mean conditioned on response-types.
The first line provides the estimated variable means, the second line gives the standard deviation of the estimate and the third
line gives the difference between the variable mean conditioned on the response-types and the baseline mean in percentage
points. All estimates are conditioned on the site of interventjon and account for the person-level weight for adult survey of
the interim analyses (Interim Impacts Evaluation manual, QOQAppendix B). The sample size is 4227. See Appendix O.4 for
detailed description of the estimation procedure.



income is above poverty line. The third outcome indicates if the head of the family is employed
and not on welfare. These outcome means must be interpreted as statistical description of the data
as they do not account for the selection bias induced by noncompliance.

Graph A in Figure 6 shows that the income for control families that decide for high, median and
low-poverty neighborhoods are $11.36, $13.01 and $16.17 respectively. If there were no selection
bias, the causal effect of low versus high-poverty neighborhoods on income would be $16.17 —
$11.36 = $4.81 thousand dollars per year.

The income difference decreases conditioned on Section 8 and experimental vouchers. The
income gap between low and high poverty neighborhoods for Section 8 is $2.51 and for experimental
voucher is $0.67 thousand dollars per year respectively. This pattern suggests strong selection bias.
The lack of subsidy of the control group prevents the lower income families to move. Section
8 allows for a share of these lower income families to move to either high or medium poverty
neighborhoods. As a consequence, we observe a decrease in the average income when comparing
control with section 8 families for either medium-poverty neighborhoods (—$1.02) and high-poverty
neighborhoods (—$2.34). The experimental voucher incentivizes lower income families to move
to low-poverty neighborhoods. When comparing control with experimental families, we observe
that the income for low-poverty neighborhoods decreases from $16.17 to $12.56. Similar pattern is

observed for the remaining outcomes.
Counterfactual Outcomes Conditioned on Response-types

Figures 7-9 display the estimated counterfactual outcome means for income, breaking though
poverty and employment respectively.?” Each counterfactual estimate is evaluated by a 2SLS
regression discussed in Section 8.1 and 9. As mentioned, estimates account for the adult survey
weights of the MTO Interin Evaluation and are conditioned on site and baseline control variables
regarding family characteristics, mobility, neighborhood safety and satisfaction.

Graph A in Figure 7 shows the counterfactual income estimates for the always-takers. We
observe a sharp increase in income of the always-taker families as the neighborhood choices range
across high, median and low-poverty. These counterfactual outcomes are associated with families
with distinct unobserved variables. Therefore the income difference across neighborhood types
cannot be understood as neighborhood causal effects. As expected, the poorer families among
always-takes are the ones who choose high-poverty neighborhoods (s1). These are also the most
disadvantaged families in terms of baseline characteristics and they comprise a third of the MTO
sample.

Graph B investigates the s4-families who are the focus of this empirical analysis. Families of
response-type s4 also comprise a third of the sample. These families are the most responsive to
MTO incentives as they chose among all neighborhood poverty levels as the voucher assignment
varies. Graph B shows a steep increase in income as families move to better neighborhoods. The

same pattern is observe in Graph B of Figures 8 and 9.

37 Appendices O.5 and P describe the estimation procedures in detail.
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Graph C in Figure 7 examines ss-families. Estimates show a large income difference between
low and high-poverty neighborhoods. However these families account for only 5% of the total
sample and these values lack statistical precision. Graph D examines families of type sg and s7.
Families of type s7 only chose between high and medium-poverty neighborhoods while sg families
chose between medium and low-poverty neighborhoods. Income estimates for these families have a
large standard deviation as these families comprise only about 10% of the sample. Similar patterns

are observed in Graphs C,D of Figures 8-9.
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Figure 6: Descriptive Statistics of Outcome Means by Neighborhood Choice and Voucher Assign-
ment

A. Income of the Head of the Family Mean
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This figure presents display the statistical description of outcome means conditioned on voucher assignments and neighborhood
choices. Graph A displays Income of the Head of the Family (in $1000). Graph B displays the Breaking Through Poverty,
namely the indicator whether household income is above poverty line. Graph C displays Employment (household head employed
and not on welfare); All estimates are conditioned on site and on baseline control variables regarding family characteristics,
mobility, neighborhood safety and satisfaction. [1] Family Characteristics: if resident ever married, if has no teenagers and if
has a disable family member; [2] Mobility: applied for a Section 8, if has moved at least 3 times within 5 years; [3] Neighborhood
safety: if being beaten/assaulted in the past 6 months (prior to intervention), if has moved in the past due to gangs, and if
feels unsafe at night. [4] Neighborhood satisfaction: reported no friends, has watched for neighbor’s children, if has no family in
the neighborhood, if chats with neighbor, and neighborhood dissatisfaction index. All estimations account for the person-level
weight for adult survey of the interim analyses as described in the MTO Interim Impacts Evaluation manual, 2003, Appendix
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Neighborhood Causal Effects

Figure 10 displays the treatment effects of compliers s4 for income (Graph A), breaking though
poverty (Graph B) and employment (Graph C). The first column of each graph displays the treat-
ment effects for low versus high poverty neighborhoods, the second column examines low versus
median poverty and the last column shows causal effects for medium versus low poverty neighbor-
hoods. Treatment effects for high versus low-poverty neighborhoods are statistically significant for
all labor market outcomes. Families who move from high-poverty neighborhoods to low-poverty
neighborhoods experience, on average, a 14% increase in income, a 20% increase in employment
and an increase of 38% in their likelihood of breaking out of poverty. The treatment effects for
low versus median poverty neighborhoods (second columns) are smaller than those for low versus
high. This result is coherent with the decrease in the quality gap between neighborhood types.
Treatment effects are still significant for employment and breaking trough poverty outcomes. The
last columns display the treatment effect for medium versus low poverty neighborhoods. None of
these estimates are statistically significant.

The treatment effects corroborate a large literature on social sciences claiming that neighbor-
hood characteristics have substantial influence the economic well-being of its residents (Wilson,
2009). All estimates are positive supporting the claim that better neighborhoods impact labor
market outcomes positively. Estimates are larger the bigger the gap in neighborhood quality. The
largest treatment effects occur when comparing low versus high poverty neighborhoods, followed

by low versus median and then by median versus high.
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Figure 10: Causal Effects on Employment, Poverty Reduction and Income for Compliers (S = s4)

A. Treatment Effects on Income of the Head of the Family
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This figure displays three graphs showing the causal effects for response-type s4. Graph A examines the income of the head
of the family in $1000 per year. Graph B focus on Breaking Through Poverty, that is an indicator whether household income
is above poverty line. Graph C displays the Employment Indicator (household head employed and not on welfare); The first
column of each graph displays the causal effect for low versus high poverty neighborhood (E(Y (t;) — Y (t4)|S = s4)), the
second column for low versus medium poverty neighborhood (E(Y (¢;) — Y (¢m)|S = s4)) and the last column for medium versus
high poverty neighborhood (E(Y (¢tm) — Y (t4)|S = s4)). The following information is displayed for each causal effect: (1) the
estimated standard deviation (s.d); (2) the p-valued for two-tailed test on the null hypothesis that equates the causal effect
to zero (p-val); and (3) the counterfactual outcome mean of the comparison group (Baseline). Each estimate is obtained by
performing 2SLS regressions on transformed data as discussed in Section 8.1 and 9. All estimates are conditioned on site and on
baseline control variables regarding family characteristics, mobility, neighborhood safety and satisfaction in the same fashion as
the estimations in Figures 7-8. Estimations use adult person-lgyel weight as described in the MTO Interim Impacts Evaluation
manual, 2003, Appendix B. See Appendix P for detailed descxgﬁion of the estimation procedure.



12 Conclusions

This paper offers a framework that enables researchers to exploit information on the incentives
induced by social experiments and classical economic behavior to identify treatment effects. Two
concepts play a primary role in the method: the incentive matriz, which characterizes the in-
centives induced by the design of the intervention, and the response matriz, which describes the
possible counterfactual choices that agents can choose. The incentive matrix is determined by the
experimental design. The method uses reveled preference analysis translates incentives into choice
restrictions. Those restrictions generate the response matrix, which contains all the necessary
information to examine the nonparametric identification of causal parameters.

This framework is used to evaluate neighborhood effects of the Moving to Opportunity, a housing
experiment that designed to investigate the economic consequences of relocating poor families living
in high poverty neighborhoods to low-poverty communities. The intervention randomly assigned
families into three groups: control (z.), Section 8 (zg) and experimental (z.). Experimental families
received incentives to move to a low-poverty neighborhood. Section 8 families received incentives to
move to either low or medium-poverty neighborhoods and control families received no incentives.
MTO noncompliance was substantial. Half of the families that received incentives to relocate to
low-poverty neighborhoods did not move while 20% of the that did not receive incentives moved
to either medium or low-poverty neighborhoods. Noncompliance still allows for the evaluation the
causal effect of being offered a voucher, that is, voucher effects. examples of voucher effects are the
intention-to-treat and the treatment-on-the-treated parameters. An influential literature on MTO
shows that voucher effects on labor market outcomes are not statistically significant.

This paper differs from previous literature by exploiting the information on the incentives
induced by the MTO intervention. This enables to evaluate neighborhood effects, that is, the causal
effect of residing in different neighborhood types. A useful characteristic of the MTO incentive
matrix is that it presents momnotonic incentives: changes in the instrument affect incentives in
the same direction for all choices. Otherwise stated, a change in the instrumental values from
2 to 2’ that increases incentives for a choice ¢ cannot decrease incentives for another choice t'.
Monotonic incentives attributes non-trivial properties to the response matrix. The response matrix
properties are then used in the identification of causal parameters, estimation of treatment effects
and testing of model assumptions. The method also permits to decompose voucher effects in terms
of neighborhood effects.

Although voucher effects are not significant, neighborhood effects are. On average, moving
from a high-poverty neighborhoods to low-poverty neighborhoods yields a 14% increase in income,
a 20% increase in employment and an increase of 38% on the likelihood of breaking out of poverty
for the families that respond to MTO incentives. Moreover, causal effects are greater the greater
the gap between neighborhood poverty levels. This result reconciles MTO with a large literature
which claims that neighborhood characteristics has a significant influence the lives of its residents
(Wilson, 2009).
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A major benefit of this framework is that noncompliance is not perceived as an econometric
problem, but rather an essential tool for policy evaluation. The estimation of causal parameters can
be achieved using well-known econometric methods such as OLS and 2SLS regressions under a suit-
able transformation of the data. The method can be broadly applied to exploit economic incentives

in multiple choice models with heterogeneous agents and categorical instrumental variables.
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