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Abstract

This article discusses the econometric model of causal policy analysis and
two alternative frameworks that are popular in statistics and computer sci-
ence. By employing the alternative frameworks uncritically, economists ig-
nore the substantial advantages of an econometric approach, and this results
in less informative analyses of economic policy. We show that the econo-
metric approach to causality enables economists to characterize and analyze
a wider range of policy problems than is allowed by alternative approaches.
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1. INTRODUCTION

Causal analysis is a key component of good policy evaluation. It examines the factors that lead to
outcomes and the role played by the policy itself. It quantifies policy impacts. It provides informa-
tion about the mechanisms that produce outcomes to help understand their operation, improve
them, and determine if there are any other mechanisms that could be used to create outcomes.
It gives a framework for collating evidence across studies. To provide good policy advice, it uses
all the information available. It explores all possible counterfactual scenarios. It is grounded in
thought experiments that show what could happen if certain outcomes are altered. Good policy
analysis is science in this sense. Credible scenarios are created, analyzed, and tested using real-
world data.

Economic analysis is based on models and thought experiments. These are used routinely by
researchers who have been trained in economic theory and the hard sciences. Recently, computer
scientists and statisticians have attempted to replace the causal framework used by economists.
These alternative frameworks are best understood as approximations to economic causal analysis.
They use novel languages and unconventional methodologies to formalize the notion of causality
introduced by early economists such as Frisch (1930) and Haavelmo (1943).

The alternative frameworks exhibit the hallmark of their recent birth: Concepts are frequently
imprecisely defined or incapable of addressing the entire body of causal inferences envisioned by
the original founders of causal thought. Three distinct causal tasks of defining a causal model,
establishing its identification, and empirically estimating it from the data are frequently inter-
twined. It is unsurprising that critical notions of causation are frequently shrouded in mystery and
misunderstanding.

The current situation would be of little concern if applied economists continued to use and ex-
tend the fundamental notions of econometric causality. Unfortunately, this is not the case. Econo-
metricians and applied economists increasingly emulate causal inference that neglects the ground-
work in their own field, to the detriment of rigorous causal policy analysis.

Our goal is to improve the theory and practice of economic policy analysis by reacquainting
economists with their own rich econometric legacy.We clarify the drawbacks of two recent causal
frameworks that attempt to recast previous notions of econometric causality.We examine the well-
known Neyman–Cox–Rubin–Holland model (Neyman 1923, Cox 1958, Rubin 1974, Holland
1986, Angrist et al. 1996), which is motivated by the notion of randomized control trials (RCTs),
as an ideal framework for causality.We also investigate a less popular causal framework advocated
by computer scientists, called do-calculus (DoC) (Pearl 1995, 2012), which makes extensive use of
directed acyclic graphs (DAGs).1

Each of these approaches is well suited to investigating a subset of problems in causal infer-
ence. These approaches do, however, have significant limitations when applied to the wide variety
of problems that economists face. Relying exclusively on these techniques limits important pol-
icy analyses. For instance, the Neyman–Rubin model (henceforth referred to as NR) does not
incorporate unobservable variables. This limitation hinders the development of central concepts
of policy evaluation. We demonstrate that the NR framework offers limited capabilities for as-
sessing causal models outside of the narrow domain of the treatment-control paradigm. On the
other hand, the DoC is incompatible with several well-established identification techniques com-
monly used in econometric evaluations.These frameworks hinder their users from accessing help-
ful components of the econometric tool set, including social interactions, peer effects, and general
equilibrium theory.

1Readers are referred to Spiegler (2020) for a range of applications of DAGs in economics.
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We adopt the Generalized Roy model as the leading example in our discussion. We contrast
the versatility of the econometric approach to causality with the NR and the DoC approaches.We
also discuss the class of inference problems for which these recent methodologies perform well.

The article is organized as follows. Section 2 defines causality. Section 3 presents the econo-
metric model. Section 4 shows its versatility and describes various identification approaches in the
Generalized Roy model. Section 5 examines how the NR causal model approximates the econo-
metric model. Section 6 investigates how the DoC of Pearl (2009a) approximates the econometric
model. Section 7 summarizes.

2. ECONOMETRIC CAUSALITY

The modern understanding of causal inference dates back to the 1930 lectures of Ragnar Frisch,
who described causality as a thought experiment in which the researcher hypothetically manipu-
lates one or more inputs affecting an output (Frisch 1930). According to Frisch, causality is not a
physical property of the natural world, but rather an exercise of abstract manipulation of inputs
causing an output.2

The notion of causality stems from two simple yet fundamental concepts: autonomy and direc-
tionality (Frisch 1995).Autonomymeans that input-output relationships are invariant for different
input manipulations.3 It is also called structural (Hurwicz 1962).This view postulates that the map
g : X → Y between input X and output Y remains stable as X ranges in its domain. Causality is
directional. The map g : X → Y establishes a relationship in which X causes Y. Inverting the map
g may generate a stable relationship of Y on X. However, such a relationship is usually devoid of
causal meaning.

Consider a simple example based on the following autonomous equation:

Y = g(T ,U ). 1.

Equation 1 describes a causal model in which the inputX consists of two variables (T,U ) that cause
an outcome of interest Y. In the classical setup of an RCT, U stands for an unobserved variable,
while T is a treatment indicator that takes value T = 1 for treatment and T = 0 for control.

The causal effect of T on Y is described by the thought experiment that manipulates the values
of the treatment variable T without affecting the variable U. This intervention is operationalized
by the potential (or counterfactual) outcome generated by fixing the input T to a value t. In our
model, the potential outcome is given byY(t) = g(t,U ); t� {0, 1}, and the causal effect of the binary
treatment T on the outcome Y is Y(1) − Y(0). This simple example clarifies that causality does
not require a probabilistic model. The definition of a causal effect precedes (and is conceptually
distinct) from its identification or estimation.

2.1. Adding a Probabilistic Structure

Incorporating a probabilistic structure confers empirical relevance and improves interpretability.
Let (U, T, Y) denote random variables in a probability space (I,F ,P). Each element i ∈ I rep-
resents an economic agent, and (Ui, Ti, Yi) denotes the realized variables associated to agent i.
Thus, the counterfactual outcome of agent i when the treatment T is fixed to the value t � {0,
1} is Yi(t) = g(t, Ui), and the treatment effect for agent i is given by Yi(1) − Yi(0). The average
treatment effect (ATE) is the expected value of treatment effects across the entire population I,

2In his words, “causality is in the mind.”
3Frisch (1995) describes autonomous equations as deterministic functions that are “invariant” to changes in
their arguments. Hurwicz (1962) prefers the term “structural” to denote autonomous equations.
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ATE = EI (Yi(1) −Yi(0)), which can also be expressed as the integral of the difference of counter-
factuals over the support of the unobserved variable U. In this notation, we write

ATE =
∫
u∈supp(U )

E(Y (1) −Y (0)|U = u)dF (u) =
∫
u∈supp(U )

(g(1, u) − g(0, u))dF (u), 2.

where F(u) = P(U ≤ u) denotes the cumulative distribution function of variable U.
Variables T and U are called external (or exogenous) if they are not caused by any variable

within the causal model. In this case,T andU are statistically independent—that is,T ⊥⊥U—and
the counterfactual outcomemean E(Y(t)) can be evaluated by the conditional outcome expectation
E(Y|T = t); we have

E(Y (t )) = E(g(t,U )) = E(g(t,U )|T = t ) = E(Y |T = t ); t ∈ {0, 1}, 3.

where the second equality is due to T ⊥⊥U . ATE is identified by the difference in means between
treated and control participants.

Econometrics textbooks often discuss causality as a property of an estimator, usually ordinary
least squares (OLS).This approach reverses the logic of causality. It also generates confusion, since
the OLS model is described by statistical assumptions that are void of causality.4 The causal con-
tent of the OLSmodel can only be assessed using causal notions such as fixing and counterfactuals,
which are not part of the conventional statistical tool set.

The OLS model arises by assuming that function g in Equation 2 is linear, that is,

Y = α + βT +U . 4.

The exogeneity of T and U implies that U and T do not cause each other. In this case, the linear
assumption in Equation 4 imposes a constant treatment effect across individuals: Yi(1) − Yi(0) =
β for all i ∈ I. Under exogeneity, U and T are statistically independent, and the OLS estimator
for β is an unbiased estimator for the average treatment effect of T on Y. Thus, it is often said that
the causal interpretation of the OLS estimator stems from the independence between T and U.
This assessment blurs the logic of causality by conflating the definition of causal effects with their
estimation from data. In fact, the question of whether the OLS estimator is biased is a statistical
assessment that is separate from the causal inquiry of whether β in Equation 4 is the causal effect
of T on Y.Table 1 is useful in clarifying this difference.

Table 1 describes three causal relationships between U and T. Random variables ϵT, ϵU denote
mutually statistically independent error terms that are not observed by the analyst. In Model 1, T
and U are jointly caused by an unobserved confounding variable V. Parameter β in Equation 4 is
still the causal effect of T on Y. However,U and V are not statistically independent, and the OLS
estimator is biased. Model 2 differs from Model 1 in that U causes T. These models, however, are
statistically equivalent in that T and U are not independent and β remains the causal effect of T
on Y. In Model 3, treatment T causesU, and the parameter β in Equation 4 is not the causal effect
of T on Y anymore.

Table 1 Examples of causal relationships between T and U

Model 1 Model 2 Model 3
T = fT(ϵT, V) T = fT(ϵT,U ) T = fT(ϵT)
U = fU(ϵU, V) U = fU(ϵU) U = fU(ϵU, T)

4For an example of how confusing this concept is to statisticians, readers are referred to Pratt & Schlaifer
(1984).
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2.2. Why Do We Need a Causal Framework?

The mismatch between statistical and causal analyses can be traced back to the fact that statistics
lacks directionality. In statistics, two random variables X, Y can be fully described by their joint
distribution.Causality requires additional information that assigns the direction of the causal rela-
tionship betweenX and Y. This gap has been filled by causal frameworks that offer additional tools
to investigate causal inquiries. These frameworks should enable the analyst to clearly distinguish
three primary tasks of causal inference:

1. The first task is to precisely define a causal model that is grounded in scientific theory.
2. The second task regards the identification of causal parameters. The framework offers

mathematical tools that enable the analyst to manipulate causal inputs and to investigate
the identification of causal parameters.

3. The third task is the estimation and testing of identified causal parameters. This task lies
within the realm of statistical analysis.

Furthermore, causal frameworks should be sufficiently adaptable to the wide range of policy
questions investigated by economists. Examples of policy questions include the evaluation of mod-
els such as mediation analysis, simultaneous equation models, models of agent interactions, and
collation of evidence across studies.

We make the case that recently developed causal frameworks lack the malleability needed to
address the vast range of policy concerns investigated by economists. These frameworks embody
Marschak’s maxim (Heckman 2008a): They are extremely useful for addressing a specialized subset
of policy questions faced by the economist but lack the necessary flexibility to address a wider range
of problems. We now discuss these causal frameworks in greater detail.

3. ECONOMETRIC CAUSAL FRAMEWORK

A causal model M : T → P(T ) is a system of structural equations defined by a mapping between
a set of variables T and its power set. Structural equations are defined to be invariant maps from
arguments to outcomes: Equations remain the same for any variations of arguments. Each variable
K in a variable set T is mapped into a (potentially empty) subsetM(K ) contained in T . Variables in
M(K ) ⊂ T are said to directly cause K ∈ T . Each variable K ∈ T is associated with an unobserved
error term εK ∈ E . The structural equation of a variable K ∈ T is given by K = fK (M(K ), εK ).

The variable set T comprises random variables (or random vectors) that may be observed or
unobserved by the analyst.Error terms in E are assumed to bemutually independent and externally
(or exogenously) specified.5 The error terms are not caused by any variable in T . Similarly, a
variable K is called exogenous when it is not caused by a variable in T —that is, M(K ) = ∅ and
K = fK(ϵK). All variables are defined on a common probability space (I,F ,P).

We adopt the Generalized Roy model as our leading example. The model is a cornerstone
in the literature of policy evaluation (Heckman & Taber 2008). The original model (Roy 1951)
investigated the occupational choice of an economic agent that decides between two economic
sectors based on the perceived difference of income between them. The model has been gener-
alized to address a broad range of choice incentives and policy interventions that affect agents’
decisions (Abbring & Heckman 2007; Heckman & Vytlacil 2007a,b). Those generalizations
include psychological costs, price variations, tuition policies, and unobserved assessments of

5The independence among error terms comes without loss of generality, as any dependence structure could
be modeled via other unobserved variables in T .
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Table 2 Representations of the Generalized Roy model

Variable map Structural equation DAG LMC
Z M(Z) = ∅ Z = fZ(ϵZ) V

T YZ

Z ⊥⊥ V |∅
V M(V ) = ∅ V = fV(ϵV) V ⊥⊥ Z|∅
T M(T ) = {Z,V } T = fT(Z, V, ϵT) T ⊥⊥ ∅|(Z,V )
Y M(Y ) = {T ,V } Y = fY(T, V, ϵY) Y ⊥⊥ Z|(T ,V )

Abbreviations: DAG, directed acyclic graph; LMC, local Markov condition.

choice benefits. The model has been widely applied to examine the causal effects of a variety of
choice settings6 and policy interventions.7

The simplest representation of the Generalized Roy model comprises four random variables
T = {Z,V ,T ,Y }, where Z is an instrumental variable (IV) that causes an outcome Y only through
its effects on a treatment choice T. The variable V denotes an exogenous and unobserved con-
founding variable that causes both T and Y.8 In the context of the Generalized Roy model, Z
stands for an external policy vector. The confounding variable V may include the subjective eval-
uation of choice benefits among heterogeneous agents. The confounder is a source of selection
bias as it induces a covariation between choice T and outcome Y that is not due to the causal effect
of T on Y.Table 2 displays four equivalent representations of the Generalized Roy model.

The first column ofTable 2 lists the variables of the Roy model. The second column describes
the causal model as a mapping of the variable set. The third column displays the corresponding
structural equations.The fourth column displays the model as a DAG,where arrows denote causal
relationships, circles denote unobserved variables, and squares denote observed variables.9

The last column of Table 2 describes a property called the local Markov condition (LMC).10

Some notation is necessary to state the condition. The language of Bayesian networks uses the
term parents of K for the variables that directly cause K, that is, M(K ). The children of K com-
prise the variables directly caused by K, namely,C(K ) = {J ∈ T ;K ∈ M(J)}. The descendants of a
variable K,D(K ), include all the variables that are directly or indirectly caused by K. These include
all the subsequent iterations of the children of K.11 A causal model is recursive (acyclic) if no vari-
able is a descendant of itself. The LMC is a property of recursive models stating that a variable is
independent of its nondescendants conditioned on its parents, that is,

LMC: K ⊥⊥ (T \ D(K ))|M(K ). 5.

For instance, outcome Y has no descendants, and its parents are {V,T}. Thus, its LMC isY ⊥⊥ Z |
(T ,V ), as listed in the bottom row ofTable 2.Z has no parents, and its descendants are T, Y. The

6For instance, Heckman & Vytlacil (2007a) investigate multiple variations of the original model, Heckman
et al. (2008) extend the model for ordered and unordered choice models, and Heckman & Pinto (2018) and
Lee & Salanié (2018) investigate the case of unordered multiple choice models with multi-valued treatments.
Abbring & Heckman (2007) consider dynamic discrete choice models in this framework.
7For example, the model has been used to evaluate schooling choices, migration decisions, criminal behaviors,
neighborhood choices, and early childhood interventions.
8Choice Tmay be binary, discrete, or continuous, and the confounder variable V can denote a random vector
of arbitrary dimension.
9We refer the readers to Spiegler (2020) and Lauritzen (1996) for information on DAGs and Bayesian net-
works.
10Kiiveri et al. (1984) and Pearl (1988) provide further information on the local Markov condition.
11Notationally, for any subset T̃ ⊂ T , let C(T̃ ) be the union of the children of all the variables in T̃ , that
is, C(T̃ ) = ∪K∈T̃ C(K ). The descendants of K is the smallest set D(K ) ⊂ T that contains the children of K,
C(K ) ⊂ D(K ), and its own children, C(D(K )) = D(K ).
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set of LMCs for all variables in T fully characterizes the causal model. Additional independence
relationships may be generated by the graphoid axioms of Dawid (1976). Graphoid axioms consist
of six rules that apply for any disjoint sets of variables X ,W ,Z,Y ⊆ T :

1. Symmetry: X ⊥⊥ Y | Z ⇒ Y ⊥⊥ X | Z.

2. Decomposition: X ⊥⊥ (W ,Y ) | Z ⇒ X ⊥⊥ Y | Z.

3. Weak union: X ⊥⊥ (W ,Y ) | Z ⇒ X ⊥⊥ Y | (W ,Z).

4. Contraction: X ⊥⊥W | (Y ,Z) and X ⊥⊥ Y | Z ⇒ X ⊥⊥ (W ,Y ) | Z.

5. Intersection: X ⊥⊥W | (Y ,Z) and X ⊥⊥ Y | (W ,Z) ⇒ X ⊥⊥ (W ,Y ) | Z.

6. Redundancy: X ⊥⊥ Y |Z ⇒ X ⊥⊥ Y |Z.

It is worth noting that the merits of DAGs and Bayesian networks are not limited to causal
inference and probabilistic analysis. A clever and original use of Bayesian networks is proposed
by Spiegler (2020), who employs DAGs to model causal misconceptions in decision making and
demonstrates their far-reaching implications for economic behavior.

3.1. Counterfactual Approaches

We obtain a counterfactual outcome by the hypothetical (external) manipulation of the targeted
variable that causes the outcome of interest. This causal manipulation is accomplished through
the use of the fix operator, introduced in the seminal work of Haavelmo (1943). In the Roy model,
the counterfactual outcome Y(t) is obtained by fixing the T-input of the outcome equation to a
value t ∈ supp(T ) so that Y(t) = fY(t, V, ϵY).

Fixing only affects the outcome equation. It substitutes the treatment random variable T by
the treatment value t. It does not eliminate the treatment variable T from the causal model nor
modifies the choice equation T = fT(Z, V, ϵT).

The do operator of Pearl (1995, 2012) is similar to fixing as it substitutes all T-inputs from the
structural equations of the variables directly caused by T. The do operator differs from fixing as
it deletes (“shuts down”) the structural equation for the treatment variable T, which effectively
suppresses the random variable T from the causal model.

Neither the fix nor the do operator is well defined in statistics. These are causal operators that
affect only the distribution of the descendants of the variable being fixed. In contrast, statistical
conditioning affects the distribution of all variables that are not statistically independent of the
conditioning variable. Fixing T in the Roy model affects the outcome Y but does not impact the
confounder V or the instrument Z, which remain statistically independent. Conditioning on T, on
the other hand, alters the distributions of Z and V, which are no longer statistically independent.

Heckman & Pinto (2015) develop a causal framework that expresses the ill-defined causal op-
erations of fixing or doing in terms of standard statistical conditioning. They distinguish the em-
pirical model that generates observable data from a hypothetical model that is used to formulate
the thought experiments involving the manipulation of inputs that determine causality.

The hypothetical model formalizes Frisch’s insights on causality. It is an abstract model that
shares the same structural equations and the same distributions of error terms as the empirical
model. It differs from the empirical model in that it appends a hypothetical variable T̃ which
replaces the T-input of variables directly caused by T. The hypothetical variable captures the
causal notion of an exogenous manipulation of the treatment. The hypothetical model translates
the causal operation of fixing T into the statistical operation of conditioning on T̃ .

www.annualreviews.org • Econometric Model for Causal Policy Analysis 899

A
nn

u.
 R

ev
. E

co
n.

 2
02

2.
14

:8
93

-9
23

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
U

ni
ve

rs
ity

 o
f 

C
hi

ca
go

 L
ib

ra
ri

es
 o

n 
08

/2
4/

22
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 



We illustrate the hypothetical model using the Generalized Roy model. For notational clarity,
we use Me for the empirical (original) model, Mfix for the model that applies the fix operator,
Mdo for the model using the do operator, and Mh for the hypothetical model. We also use the
subscripts e, fix, do, and h for the probability distributions and expectations associated with each
model.Table 3 displays the Roy model for each of these settings.

The second column of Table 3 presents the original empirical model. The third and fourth
columns present the models generated by the fix and the do operators, respectively. Both models
replace the T-input of the outcome equation by a value t ∈ supp(T ).Themain difference between
these models is that fix retains the treatment variable, whereas do suppresses it. The hypothetical
model is displayed in the last column of Table 3. It replaces the T-input of the outcome equa-
tion with an external hypothetical variable T̃ .

All models share the same distributions of error terms ϵZ, ϵT, ϵV, and ϵY. Therefore, the joint
distribution of nondescendant T, that is, (V, Z), is the same across the models. The structural
equation for the counterfactual outcome Y(t) in the fix or do model depends only on V and ϵY, and
thus the models share the same distribution of Y(t).

The hypothetical variable T̃ enables us to circumvent the necessity of introducing a causal op-
erator. The variable has no parents and, according to the LMC of Equation 5, it is independent
of all its nondescendants, T̃ ⊥⊥ (T ,V ,Z). In particular, T̃ ⊥⊥ T always holds for any hypothetical
model. T̃ is also statistically independent of error terms, as εT̃ ⊥⊥ (εZ , εT , εV , εY ). The counterfac-
tual outcome is obtained by simply conditioning on T̃ . In summary, we have that(

Y | T̃ = t
)
Mh

d=
(
Y (t )

)
Mfix

d=
(
Y (t )

)
Mdo

. 6.

It is also the case that Equation 6 holds when conditioned on any variableK that is a nondescendant
variable of T̃ : (

Y | T̃ = t,K
)
Mh

d=
(
Y (t ) | K

)
Mfix

, 7.

(
Y | T̃ = t, {K \ {T }}

)
Mh

d=
(
Y (t ) | {K \ {T }}

)
Mdo

. 8.

To clarify this, let T be an indicator of college graduation and let Y denote adult income.
Treatment-on-the-treated (TT) is the average causal effect of college on income by those who
choose to go to college (T = 1), which is commonly described as TT = Efix(Y(1) − Y(0)�T =
1) using the fix operator. The parameter is equivalently described as TT = Eh(Y | T̃ = 1,T =
1) − Eh(Y | T̃ = 0,T = 1) using the hypothetical model. The do operator excludes the treatment
variable T, which poses a serious challenge in defining the TT parameter. Shpitser & Pearl (2009)
solve this issue by appending special structure to the counterfactual model.

Equation 6 suggests that the way that counterfactuals are expressed is of little relevance in the
study of causality. That assessment is misleading. Small differences in characterizing counterfac-
tuals have significant consequences for the machinery used to identify causal effects. Section 6
illustrates the difference between the identification approach using the DoC developed around
the do operator and the identification approach using the hypothetical model framework.

3.2. Identification of the Counterfactual Outcome

Counterfactuals are said to be identified if they can be expressed in terms of the observed data
generated by the empirical modelMe.This task requires us to connect the probability distribution
(or expectation) of counterfactual variables with the observed distributions of the empirical model.
There are several ways to connect counterfactual variables with the empirical model.
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We first consider the fix operator of model Mfix in Table 3. The LMC of Y(t) in Mfix implies
that

Y (t ) ⊥⊥ T |V. 9.

Equation 9 states that the counterfactual outcome Y(t) is independent of the treatment variable T
conditional on the confounding variable V. This relationship is an example of a matching condi-
tion. It plays a primary role in the identification of treatment effects, as it enables us to connect
the counterfactual outcome Y(t) in Mfix with the empirical model Me :

Pfix
(
Y (t ) |V )=Pfix

(
Y (t ) |V ,T = t

)
, 10.

= Pfix

⎛⎝ ∑
t∈supp(T )

1[T = t]Y (t ) |V ,T = t

⎞⎠ , 11.

= Pfix

⎛⎝ ∑
t∈supp(T )

1[T = t] fY (t,V , εY ) |V ,T = t

⎞⎠ , 12.

= Pfix
(
fY (T ,V , εY ) |V ,T = t

)
, 13.

= Pe
(
Y |V ,T = t

)
. 14.

Equations 10–14 use the structural equations to express the probability distribution of the coun-
terfactual outcome Y(t) in Mfix with the distribution of the outcome Y in empirical model Me.

Equation 10 is a consequence of the matching condition in Equation 9. Equations 10–13 apply
the definitions of the structural equations. Equation 14 uses the fact that variables T, V, ϵY share
the same distribution in both models Mfix and Me.

The hypothetical model Mh offers criteria that enable us to connect the counterfactual and
empirical distributions in a systematic manner. For any disjoint set of variablesY ,W ∈ T and any
values t, t ′ ∈ supp(T ), we have that12

Y ⊥⊥ T̃ | (T ,W ) ⇒ Ph
(
Y | T̃ = t,T = t ′,W

)
= Ph(Y | T = t ′,W ) = Pe(Y | T = t ′,W ), 15.

Y ⊥⊥ T | (T̃ ,W ) ⇒ Ph
(
Y | T̃ = t,T = t ′,W

)
= Ph(Y | T̃ = t,W ) = Pe(Y | T = t,W ). 16.

Equations 15 and 16 state that we can switch from the hypothetical to the empirical model
whenever the independence relationships in Equation 15,Y ⊥⊥ T̃ | (T ,W ), or Equation 16,Y ⊥⊥
T | (T̃ ,W ), hold.13 The LMC of Y in Mh generates the following matching condition:

Y ⊥⊥ T |(T̃ ,V ). 17.

Thus, according to Equation 16, we have that Ph(Y | T̃ = t,V ) = Pe(Y | T = t,V ).
The hypothetical framework gives a systematic approach for connecting hypothetical and em-

pirical models. The framework employs additional structure beyond what is obtained from fixing
that might not be justified in the simple case of the Roy model. Section 6 explores more elaborate
models where the additional complexity of the hypothetical framework is warranted.

12Readers are referred to Heckman & Pinto (2015) for a proof. The criteria in Equations 15 and 16 would
still hold if the values t, t ′ ∈ supp(T ) were replaced by subsets A,A′ ⊂ supp(T ), respectively.
13Heckman & Pinto (2015) offer a discussion of the connection between empirical and hypothetical models.
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The do operator does not generate matching conditions such as Equation 9 or 17 because the
treatment T is absent. Instead, the DoC of Pearl (2009a) checks for matching conditions using
a DAG-based analysis called the back-door criterion (Pearl 1993). The method employs special
jargon that is obscure for most economists. The criterion is part of the DoC, which consists of
a set of DAG-oriented techniques that enables us to systematically examine the identification of
causal effects. The method is general in the sense that it applies to any DAG, but it is limited in the
sense that it does not accept identifying assumptions outside the DAG terminology. We discuss
the DoC machinery and its benefits and limitations in Section 6. For now, we use the back-door
criterion to introduce some of the DoC nomenclature.

Let G be the original DAG that represents the empirical model, and let GT be the DAG that
suppresses the arrows departing from T. In the DoC, the matching condition is expressed by the
statement “V d-separates Y and T in the DAG GT ,” where the d-separation is a DAG criterion
that checks for conditional independence among variables. Namely, let U be a path of arrows that
connects variables T and Y in a DAG G regardless of the arrows’ directions. A collider C in path
U is a variable that has two arrows pointing at it (inverted fork). A variable V in the path U is said
to block T and Y in the DAG G if it is not a collider (nor a descendant of a collider). T and Y are
said to be d-separated by a set of variables V if V d-separates all paths from T to Y. The back-door
criterion holds for confounder V in the Roy model of Table 3.

The counterfactual modelsMfix,Mh, andMdo employ distinct techniques to generate the same
conclusion: The identification of the counterfactual outcome requires analysts to control for the
confounding variable V. In summary, we have that

Pfix(Y (t ) | V ) = Ph(Y | T̃ = t,V ) = Pdo(Y (t )|V ) = Pe(Y | T = t,V ). 18.

If V were observed, we would be able to evaluate the expected value of the counterfactual out-
come expectation, Eh(Y | T̃ = t ), by integrating the observed expectation Ee(Y�T = t,V) over the
support of V. The econometric literature provides a rich menu of strategies to control for the
confounding variable V. We discuss some of these strategies in the next section.

4. SOME IDENTIFICATION STRATEGIES

Section 3.1 explains that the identification of causal effects in theGeneralizedRoymodel hinges on
controlling for the confounding variable V. Unfortunately,V is not observed, and the Generalized
Roy model is not identified without additional assumptions.

The literature on econometric policy evaluation offers a vast menu of assumptions to aid in
identifying the causal effect ofT on Y.Our discussion is unavoidably brief due to space constraints;
we mention only a limited share of the identification strategies of this literature.

4.1. Matching on Observables

A popular method for identifying treatment effects is to assume that a set of observed pretreat-
ment variables X suffices to control for the confounding variable V.14 Otherwise stated, it assumes
that the observed variable X is a balancing score for the confounding variable V. This assump-
tion is often referred to as matching on observables, unconfoundness, ignorability, or exogeneity
assumption (Rosenbaum & Rubin 1983, Heckman et al. 1998, Imbens 2004).

Figure 1 presents the empirical and hypothetical models corresponding to matching on ob-
servables. The LMC of T in the hypothetical model implies thatY ⊥⊥ T | (T̃ ,X ) or, equivalently,

14By pretreatment variables X we mean variables that are not descendants of the treatment variable T.
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Empirical model Hypothetical model

VX

T Y

VX

T Y T̃

Figure 1

Matching model: empirical and hypothetical causal models.

Y (t ) ⊥⊥ T | X . This matching condition enables us to identify the counterfactual outcome by
conditioning onX: Ph(Y |T̃ = t,X = x) = Pfix(Y (t )|X = x) = Pe(Y | T = t,X = x).The common
support (overlap) assumption—0 < Pe(T = t|X = x) < 1; t ∈ supp(T )—enables us to identify the
expected value of the counterfactual outcome as Efix(Y(t)) = �Ee(Y�T = t, X = x)dFe, X(x).15

Matching on observables solves the problem of selection bias induced by unobserved variables
V via conditioning on the observed variables X. The assumption is justified in the case of RCTs,
where X denotes the pretreatment variables used in the randomization protocol. The assumption
is rather strong in observational studies and is often criticized (Heckman & Navarro 2004). It
assumes that potential bias generated by confounding variables can be ignored when controlling
for observed pretreatment variables (Heckman 2008b).Matching on observables does not require
using the IV to identify causal effects. Instead, it solves the problem of selection bias by assuming
that the bias does not exist or is of minor concern. Other strategies are more appealing.

4.2. Instrumental Variables

The simplest identifying assumption in IV models is that the functional form of outcome and
choice equations is linear. The causal effect of T on Y is then identified by the covariance ratio
cov(Y, Z)/cov(T, Z) and can be estimated by the two-stage least squares (2SLS) regression (Theil
1953).

The linearity assumption imposes the undesirable feature of constant treatment effects, which
rules out the possibility of essential heterogeneity across agents (Heckman et al. 2006). The local
instrumental variable (LIV) model of Heckman & Vytlacil (1999, 2005) addresses this problem.

The LIV model considers a binary treatment T � {0, 1} determined by a latent threshold-
crossing equation that is separable in the instrumentZ and the confounderV, that is,T = 1[ζ (Z) ≥
φ(V )]. This separability assumption arises from economic choice theory and enables the authors
to rewrite the choice equation as

T = 1
[
P(Z) ≥U

]
, 19.

where P(Z) = Pe(T = 1 �Z) is the propensity score and the unobserved variable U is given by
U = Fe, φ(V)(φ(V)), where Fe, φ(V) is the cumulative distribution function of φ(V) and the subscript
“e” denotes the empirical model.U has a uniform distribution for absolutely continuous φ(V), that
is,U ∼ unif[0, 1].

Figure 2 displays the empirical and hypothetical models of LIV. Note that Y ⊥⊥ T | (T̃ ,U )
holds.16 Thus, U is a matching variable and plays the role of the confounding variable V in
Equation 17.U is called a balancing score for V, which means that U is a surjective function of V

15Readers are referred to Heckman et al. (1998) and Imbens (2004) for estimation methods invoking matching
on observables.
16The LMC of T impliesY ⊥⊥ T | (Z, T̃ ,U ), and the LMC of Z impliesY ⊥⊥ Z | (U , T̃ ), which impliesY ⊥⊥
T | (T̃ ,U ) by contraction.
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VU

T YZ

VU

T YZ T̃

Empirical model Hypothetical model

Figure 2

Empirical and hypothetical causal models for local instrumental variables.

that preserves the independence relationship Y ⊥⊥ T | (T̃ ,V ) ⇒ Y ⊥⊥ T | (T̃ ,U ).17 Controlling
forU identifies counterfactual outcomes in the same fashion that controlling for V in Equation 18
does; that is, we have Ph(Y |T̃ = t,U ) = Pfix(Y (t )|U ) = Pe(Y |T = t,U ).

Heckman & Vytlacil (1999) show that the separability assumption enables analysts to identify
counterfactual outcomes conditioned onU= u by differentiating the outcome with respect to the
propensity score P(Z) at value u � (0, 1):

Eh(Y |T̃ = 1,U = u) − Eh(Y |T̃ = 0,U = u) = Efix(Y (1) −Y (0) |U = u) = ∂Ee(Y |P(Z))
∂P(Z)

∣∣∣∣
P(Z)=u

.

20.

This identification strategy requires sufficient variation of the propensity score P(Z) around
u � [0, 1]. If P(Z) has full support, the average treatment effect can be evaluated by ATE ≡
Eh(Y |T̃ = 1) − Eh(Y |T̃ = 0) = ∫ 1

0

(
Eh(Y | T = 1,U = u) − Eh(Y | T = 0,U = u)

)
du. For cate-

gorical instruments, the discrete counterpart of Equation 20 states that for any two values z, z′ ∈
supp(Z) such that P(z′) = u′ > u = P(z), we have that

Ee(Y |Z = z′ ) − Ee(Y |Z = z)
Pe(T = 1 | Z = z′ ) − Pe(T = 1 | Z = z)

=
∫ u′
u Efix(Y (1) −Y (0)|U = u)du

u′ − u
21.

= Efix(Y (1) −Y (0) | u ≤U ≤ u′ ). 22.

Equation 21 explains that the local average treatment effect (LATE) of Imbens & Angrist (1994)
(left-hand side) identifies the expected value of the counterfactual outcome Efix(Y(1) − Y(0)|U =
u) over the interval of U defined by the propensity scores P(z) and P(z′) in Equation 22.18 The
method of RCTs can be understood as a particular case of the LIV model in which the IV values
z0, z1 induce full compliance: P(z0) = 0 and P(z1) = 1. In this case, Equations 21 and 22 identify
the average treatment effect:

Ee(Y |Z = z1) − Ee(Y |Z = z0)
1 − 0

= Efix(Y (1) −Y (0) | 0 ≤U ≤ 1) = ATE.

4.3. Stratification

The stratification method is useful for controlling the confounding effects of V in the case of dis-
crete instruments (Z ∈ {z1, . . . , zNZ}) andmultiple choices (T ∈ {t1, . . . , tNT}).Themethod employs
a response vector S that stands for the NZ-dimensional random vector of counterfactual choices

17The term balancing score was introduced by Rosenbaum & Rubin (1983).
18Heckman et al. (2008) investigate the relationship between LIV and LATE in greater detail. Mogstad &
Torgovitsky (2018) use functional form assumptions to extrapolate the evaluation of LATE parameters beyond
the U-interval defined by propensity scores.
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across all Z values:

S = [T (z1), . . . ,T (zNZ )]
′. 23.

The values that the response vector S takes are called response-types.19 In the case of a binary
instrument Z � {z0, z1} and a binary treatment T � {0, 1}, the response vector S = [T(z0), T(z1)]′

takes four possible response-types, supp(S) = {(0, 0), (0, 1), (1, 0), (1, 1)}, which Imbens & Angrist
(1994) term always-takers, compliers, never-takers, and deniers, respectively.

The response vector S is a balancing score for V in the same fashion that U in Equation 19 is.
S is a function of V because each counterfactual choice T (z) = fT (z,V ) is a function of V itself.
Moreover, choice T can be expressed as T = [

1[Z = z1], . . . ,1[Z = zN ]
] · S. Thus, given S, the

choice T is a function of only Z, which is independent of V and Y(t). Therefore,Y (t ) ⊥⊥ T |S holds.
Heckman & Pinto (2018) show that the response vector S generates a special partition of the

support of V that renders T statistically independent of V within each partition set. They present
the necessary and sufficient conditions for the identification of counterfactual outcomes, LATE-
type parameters, and response-type probabilities.

The main difficulty in identifying causal parameters is that the number of possible response-
types usually exceeds the number of linear restrictions generated by the observed data. Indeed,
while the number of response-types grows exponentially in NZ, observed data grow linearly in
NZ. Identification requires choice restrictions that systematically reduce the number of admissible
response-types. Such restrictions can be obtained throughmonotonicity conditions or by applying
revealed preference analysis (Pinto 2016, Heckman & Pinto 2018, Buchinsky & Pinto 2021).

4.4. Matching on Unobservables

Matching on unobservables is a version of matching that uses observed data to control for an
unobserved variable Q that has two properties: (a) Q is a balancing score for the confounder V,
and (b)Qmay bemeasured with error by the observed variablesM.Figure 3 displays the empirical
and hypothetical models corresponding to matching on unobservables. The matching condition
Y ⊥⊥ T |(T̃ ,Q) holds, and Q is a balancing score for V.

The identification strategy is to explore the relationship between Q and its measurements M
in order to evaluate a proxy for Q that enables us to control for V. Formally, the method explores
the structural equationM = fM(Q, ϵM) to estimate Q.

Matching on unobservables has long been used in the economics of education (see, e.g.,Duncan
& Goldberger 1973, Goldberger 1972). The method is called the latent variable approach by
Heckman & Robb (1985a). This literature offers several possibilities for estimating Q (Aakvik
et al. 1999, 2005; Carneiro et al. 2001, 2003; Cunha et al. 2005). We refer readers to Cunha et al.
(2010) and Schennach (2020) for discussion of nonparametric identification and estimation of Q.

VQM

T Y

VQM

T Y T̃

Empirical model Hypothetical model

Figure 3

Matching on proxied unobservables: empirical and hypothetical causal models.

19The concept of a response variable was developed by Robins (1986) and further studied by several re-
searchers. Frangakis & Rubin (2002) use the term principal strata, whereas Balke & Pearl (1993) use the term
response variables.
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An example in this setting consists of the evaluation of college returns, where T denotes col-
lege graduation, Y denotes earnings, and Q stands for unobserved abilities such as cognition and
personality traits such as conscientiousness, neuroticism, and agreeableness. These abilities are
not directly observed but are measured with error by M via psychological surveys or test scores.
A common parametric approach evaluates a factor model described by structural equationsM =
fM(Q, ϵM), where Q denotes a latent factor. A proxy for Q is estimated as the factor score of the
model (see, e.g., Heckman et al. 2013).

4.5. Control Function

The control function approach was introduced by Heckman & Robb (1985b), building on earlier
work by Telser (1964), and has been examined by several authors (Ahn & Powell 1993, Powell
1994, Blundell & Powell 2003, Wooldridge 2015). The approach includes a broad class of tech-
niques that control for endogeneity issues generated by unobserved variables in the outcome equa-
tion. A simple example of a control function approach that relies on parametric assumptions is
Heckman’s sample selection correction (Heckman 1979). For a broader survey of identification of
nonlinear models with endogenous variables, readers are referred to Matzkin (1994, 2007).

We illustrate the control function approach using a version of the Roy model with binary
choices that relies on the additive separability of the outcome equation. We can express the ob-
served outcome Y in terms of counterfactual outcomes Y(t) = fT(t, V, ϵY); t � {0, 1} as

Y = Y (0) · 1[T = 0] +Y (1) · 1[T = 1]. 24.

It is convenient to decompose each counterfactual Y(t); t� {0, 1} into its mean,μt, and its deviation
from the mean,Ut. Our model is given by

Y1 = μ1 +U1, 25.

Y0 = μ0 +U0, 26.

T = 1[P(Z) ≥U ], 27.

where Equation 27 is due to the separability assumption on the choice equation that renders
U ∼ unif[0, 1]. The unobserved confounding variable U causes U1, U0. All unobserved variables
are statistically independent of the instrument Z—that is, (U1,U0,U ) ⊥⊥ Z. Moreover, the uncon-
ditional expectation of U0 and U1 is zero. We can express the expected value of the outcome Y
given the IV Z and the choice T � {0, 1} as

Ee
(
Y | Z,T = 0

) = μ0 + Ee
(
U0|Z = z,T = 0

)
, 28.

= μ0 + Ee
(
U0|Z = z,P(Z) <U

)
, 29.

= μ0 + Ee
(
U0|P(Z) <U

)
, 30.

= μ0 + K0(P(Z)), 31.

where Equation 28 uses the additivity assumption of the outcome equation in Equation 26.
Equation 29 uses the fact that the event T = 0 is equivalent to the event P(Z) < U. Equation 30
uses the independence relationship Z ⊥⊥U0. Equation 31 expresses the expected value of the en-
dogenous error termU0 as a control function of the propensity scoreK0(P(Z))= Ee(U0|P(Z)<U ).
The equation states that the endogeneity problem of error termU0 can be addressed by evaluating
the outcome Y as a function of the propensity score (i.e., the probability of selection).
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The value of the control function K0(P(Z)) at P(Z) = 0 is K0(0) = Ee(U0|0 < U ) = Ee(U0) = 0.
Thus, we can estimate the mean μ0 of the counterfactual outcome Y0 by a two-step procedure that
first estimates the propensity scoresP(Z) and then evaluates the outcomeY conditioned onT= 0 as
a function of the propensity scores. For instance, let the control functionK0(P(Z)) be approximated
by the local polynomial of degree N K0(P) = ∑N

k=1 βk,0Pk, and let Pi be the estimated propensity
score for agent i. We can then estimate the following outcome equation:

Yi = α0 +
n∑

k=1

βk,0Pki + εi, for all i such that Ti = 0. 32.

The counterfactual mean μ0 is obtained by setting the propensity scores to zero and is estimated
by the parameter α0 in Equation 32. We can apply the same rationale in Equations 28–31 to the
case of T = 1. The resulting control function is given by

Ee
(
Y | Z,T = 1

) = μ0 + K1(P(Z)), where K1(P(Z)) = Ee
(
U1|P(Z) ≥U

)
. 33.

In the case of T = 1, we seek to evaluate the control function K1(P(Z)) at the value P(Z) = 1, that
is, K1(1) = Ee(U1|1 ≥ U ) = Ee(U1) = 0.We can then estimate the following outcome equation:

Yi = α1 +
n∑

k=1

βk,1Pki + εi, for all i such that Ti = 1. 34.

The counterfactual mean μ1 is obtained by setting the propensity scores to 1 and is estimated by
the linear combination α1 +∑N

k=1 βk,1 in Equation 34.
Broadly speaking, the control function approach seeks to use observed data to estimate an

unobserved variable K that corrects for the endogenous effects of the confounding variable V
using the structure of the model. Figure 4 presents a modified version of the Roy model that can
assist in gaining a deeper understanding. Variable K in the DAG is not observed. It mediates the
impact of V on Y. Outcome Y is statistically independent of V when conditioned on K and T. We
also have that Y (t ) ⊥⊥ T |K holds. The technique to identify the causal effect of T on Y is based
on a two-step procedure that first uses IV Z and T to identify and estimate K and then uses the
matching condition Y (t ) ⊥⊥ T |K to identify the causal impact of K and T on Y.

As previously noted, our discussion on identification approach is necessarily brief.We can only
mention a small portion of the extensive economic literature on identification techniques. Some
of the essential identification strategies that are not included in this review are panel data anal-
ysis (see, e.g., Heckman & Robb 1985a, Blundell et al. 1998), difference-in-differences estima-
tors (see Heckman et al. 1999, Bertrand et al. 2004, Abadie 2005, Athey & Imbens 2006), re-
gression discontinuity design,20 simultaneous equation models (see Heckman 1978; Tamer 2003;

V

TZ

K

Y

Empirical model

Figure 4

Control function: empirical causal model.

20Regression discontinuity estimators, which are versions of IV estimators, are discussed by Heckman &
Vytlacil (2007b).
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Quandt 1988; Matzkin 2008, 2015, 2013), and nonseparable equation models (see Matzkin 1993,
Altonji & Matzkin 2005).

5. THE NEYMAN–RUBIN CAUSAL MODEL

The NR causal model was developed by Neyman (1923) and Fisher (1935) and further popular-
ized by Cox (1958) and Holland (1986). The NR causal model is a radical departure from the
causal frameworks studied in Section 3. The NR causal model is conceptually motivated by the
method of RCTs. It focuses on units of analysis instead of systems of equations. Causal models
are characterized by statistical independence relationships among counterfactual variables rather
than structural equations.

We exemplify the method using the Generalized Roy model in Table 2. A unit of analysis is
denoted by i ∈ I, which often represents an economic agent.Ti(z) is the potential treatment when
the instrument Z is set to value z ∈ supp(Z), and Yi(t, z) is the potential outcome of agent i when
Z is set to value z ∈ supp(Z) and choice T is set to t ∈ supp(T ). The NR framework characterizes
the Roy model by the following IV assumptions.

1. Exclusion restriction: Yi(t, z) = Yi(t, z′ ) for all z, z′ ∈ supp(Z) and for all i ∈ I. 35.

2. IV relevance: Z is not statistically independent of T , that is, Z �⊥⊥ T. 36.

3. Exogeneity condition: Z ⊥⊥ (Y (t ),T (z)). 37.

The NR model is popular due to its simplicity. It suppresses the structural equations that
determine the causal relationship among variable models; instead, it describes the causal model
through independence relationships among the counterfactuals of the observed variables of the
causal model. It is easy to verify that the structural equations of the Roymodel inTable 2 generate
the IV assumptions of Equations 35–37.21 Otherwise stated, the IV assumptions of Equations 35–
37 are a consequence of the causal relations described by the structural equations of the model.

It turns out that any causal model can, in principle, be equivalently described by structural
equations or by the independence relationships utilized in the NR framework (Pearl 2012). This
equivalence does not imply that the NR framework offers the same capabilities as a causal frame-
work based on structural equations. The NR framework lacks unobserved variables and structural
equations, both of which are essential tools for causal inquiry.

The lack of unobserved variables precludes econometric strategies that impose restrictions on
both observable and unobservable model components. It prevents the theoretical development
of models and significantly restricts the ability to analyze causal models using the techniques de-
scribed in Section 4.

The lack of structural equations impairs model interpretation. It complicates the assessment
of causal relationships between model variables. It prevents the use of a hypothetical model that
elucidates the notion of causality. The absence of structural equations is particularly troublesome
when judging the plausibility of the causal assumptions that characterize a model.

In practice, the set of tractablemodels that can be reasonably investigated by theNR framework
is restricted to a few possibilities: RCTs, matching on observables, IV models, and their many

21The exclusion restriction is due to the fact that Z does not directly cause Y. IV relevance is due to the fact
that Z causes T. The exogeneity condition is due to Z ⊥⊥ V.
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surrogates (see Imbens & Rubin 2015). This section illustrates some of the drawbacks of the NR
framework in analyzing key economic models.

5.1. Revisiting the Local Instrumental Variable Model Under
the Neyman–Rubin Framework

We examine the LIV model of Section 4.2 from the perspective of the NR framework. Consider
a binary choice model T � {0, 1} for which the IV assumptions of Equations 35–37 hold. These
assumptions are not sufficient to identify causal effects. An additional assumption that secures the
identification of the LATE parameter is the monotonicity condition of Imbens & Angrist (1994).
The condition states that a change in the instrument induces the agents to change their treatment
choice in the same direction. Notationally, for any z, z′ ∈ supp(Z), we have that

Ti(z) ≥ Ti(z′ ) ∀i ∈ I or Ti(z) ≤ Ti(z′ ) ∀i ∈ I. 38.

Vytlacil (2002) shows that the monotonicity condition of Equation 38 is equivalent to the separa-
bility assumption T = 1[P(Z) ≥U ]. Otherwise stated, the model generated by the monotonicity
of Equation 38 and the IV assumptions of Equations 35–37 is the NR counterpart of the LIV
model described in Section 4.

Although both frameworks are suitable to investigating causal effects, the LIV model explicitly
displays the unobserved confounding variableU,whereasNRdoes not.This feature fosters further
analysis that cannot be conducted in the NR framework. For instance, the unobserved variable U
enables us to define the marginal treatment effect (MTE) of Heckman & Vytlacil (2005) as

MTE(u) = Eh(Y | T̃ = 1,U = u) − Eh(Y | T̃ = 0,U = u) = Efix(Y (1) −Y (0) |U = u).

TheMTE plays a primary role in characterizing a variety of causal effects that are typically sought
in policy evaluations.Table 4 shows that causal effects can be expressed as weighted averages of the
MTE. This result, in turn, fosters additional literature on a variety of related questions regarding

Table 4 Causal parameters as weighted averages of the MTE

Causal parameters MTE representation Weights

ATE = E(Y(1) − Y(0)) =
∫ 1

0
MTE(p)WATE (p)d p WATE(p) = 1

TT = E(Y(1) − Y(0)�T = 1) =
∫ 1

0
MTE(p)WTT (p)d p W TT (p) = 1 − FP (p)

1∫
0

(
1 − FP (t )

)
dt

TUT = E(Y(1) − Y(0)�T = t0) =
∫ 1

0
�MTE (p)WTUT (p)d p W TUT (p) = FP (p)

1∫
0
Fp(t )dt

TSLS = Cov(Y ,Z)
Cov(T ,Z)

=
1∫

0

MTE(p)WTSLS (p)d p W TSLS (p) =

1∫
p

(
t − E(P)

)
dFP (t )

1∫
0

(
t − E(P)

)2dFP (t )
LATE = E(Y | Z = z1) − E(Y | Z = z0)

P(z1) − P(z0)
=

P(z1 )∫
P(z0 )

MTE(p)WLATE (p)d p W LATE (p) = 1
P(z1) − P(z0)

Fp(p) = P(P(Z) ≤ p) is the cumulative distribution function of the propensity score P(Z). Abbreviations: ATE, average treatment effect; LATE, local average
treatment effect; MTE, marginal treatment effect; TSLS, two-stage least squares; TT, treatment on the treated; TUT, treatment on the untreated.
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Table 5 Hypothetical matching model

Causal model Directed acyclic graph Independence relationships
V = fV(ϵV)

V

T

W X

L U

Y

Y (t ) ⊥⊥ T | L
T = fT(V,W, ϵT) Y (t ) �⊥⊥ T | X
L = fL(T, V, ϵL) Y (t ) �⊥⊥ T | (X ,L)
X = fX(W, J, ϵX)
Y = fY(T, L,U, J, ϵY)
J,W, V,U are external variables

estimation, partial identification, extrapolation, and inference of causal effects.22 In conclusion,
switching from the NR framework to structural equations allows for deeper causal analyses that
unlock additional research paths.

5.2. Interpreting Matching on Observables

The most popular identification strategy in the NR framework is matching on observables, de-
scribed in Section 4.1. In the NR framework, the causal model is described by the independent
assumption Y (t ) ⊥⊥ T | X , where X denotes preintervention variables.

Matching conditionY (t ) ⊥⊥ T | X may lead the researcher to believe that increasing the num-
ber of matching variables X always reduces the potential bias generated by unobserved con-
founders.This statement is known to be false (see, e.g.,Greenland et al. 1999,Heckman&Navarro
2004, Pearl 2009b).However, it is rather difficult to investigate its falsity using theNR framework.
The causal model of Table 5 clarifies this point.

The causal model ofTable 5 comprises four observed variables: a treatment T, an outcome Y, a
pretreatment variableX, and a posttreatment variable L. The model also contains four unobserved
variables V,U,W, and J that are external.

This model generates peculiar counterfactual relationships. The matching condition Y (t ) ⊥⊥
T | L holds for the posttreatment variable L but does not hold for the pretreatment variable X.
The counterfactual outcome Y(t) is not statistically independent of T conditional on X, that is,
Y (t ) �⊥⊥ T | X . Moreover, adding the pretreatment variable X to the conditioning set of Y (t ) ⊥⊥
T | L invalidates the independence relationship, as Y (t ) �⊥⊥ T | (X ,L).

The causal model of Table 5 exemplifies the difficulty of performing causal investigation
within the NR framework. The model’s unusual properties stem from its peculiar causal rela-
tionships. These relationships are hard to assess using the NR framework, which lacks structural
equations and unobserved variables. Moreover, the direction of the causal relationships among
variables in NR is not explicitly stated.

6. THE DO-CALCULUS: ADVANTAGES AND LIMITATIONS

The DoC of Pearl (1995, 2009a, 2012) uses graph-based algorithms to examine the identification
of counterfactuals in causal models represented byDAGs.23 It employs structural equations, allows
for unobserved variables, and clearly specifies the causal relationships among model variables.

22For examples of this literature, readers are referred to Heckman & Vytlacil (2007b), Brinch et al. (2017),
Mogstad et al. (2018).
23For a recent book on the graphical approach to causality, readers are referred to Peters et al. (2017); for
related works on causal discovery, readers may consult Hoyer et al. (2009), Glymour et al. (2014), Heckman
& Pinto (2015), and Lopez-Paz et al. (2017).

www.annualreviews.org • Econometric Model for Causal Policy Analysis 911

A
nn

u.
 R

ev
. E

co
n.

 2
02

2.
14

:8
93

-9
23

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
U

ni
ve

rs
ity

 o
f 

C
hi

ca
go

 L
ib

ra
ri

es
 o

n 
08

/2
4/

22
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 



The DoC is similar to the hypothetical model in the sense that both are based on structural
equations. The frameworks, however, differ significantly in terms of counterfactual manipula-
tions. DoC defines counterfactuals by “shutting down” (eliminating) the equation of the treat-
ment choice, whereas the hypothetical model adds a hypothetical variable of treatment choice
that formalizes the notion of a thought experiment. DoC employs DAG-based algorithms outside
the realm of standard statistical analysis. The hypothetical model makes statistics converse with
causality. Section 6.3 compares the identification techniques used in each framework.

Pearl and coauthors havemade significant contributions to the theory of causality.The primary
accomplishment of the DoC is that it is a complete procedure. This means that if a counterfactual
outcome of a causal model defined by a DAG is identified, then it can always be assessed by the
iterative application of the DoC algorithms (Huang & Valtorta 2006, Shpitser & Pearl 2006).

Despite its apparent relevance, economists rarely employ theDoC. Its major limitation is that it
only applies to nonparametric models that can be fully characterized by aDAG.TheDoC does not
apply to equilibrium or simultaneous equationmodels. It does not apply to identification strategies
that invoke functional forms restrictions either.DoC cannot accommodate IV assumptions such as
monotonicity or separability. DoC eliminates the identification strategies discussed in Section 4.
Applying the DoC to the Generalized Roy model generates the misleading claim that the Roy
model is not identified.

6.1. Do-Calculus Machinery

Let G denote a DAG that represents the original causal model. Let Y, K, X, T denote disjoint
variable sets in T . In DoC notation, T(X) denotes the variables in T that do not directly or in-
directly cause X. The DoC uses GK̄ for the derived DAG that deletes all causal arrows arriving
at K in the original DAG G. GT denotes the DAG that deletes all causal arrows emerging from
T. In this notation, GK ,T stands for the derived DAG that suppresses all arrows arriving at K and
emerging from T, while GK ,T (X ) deletes all arrows arriving at K in addition to arrows arriving at
T(X)—namely, arriving at variables in T that are not ancestors of X.

The DoC uses three rules. Each rule combines a graphical condition and a conditional inde-
pendence relation that, when satisfied, imply a probability equality.

1. Rule 1: If Y ⊥⊥ T |(K ,X ) holds in GK , then P(Y|do(K), T, X) = P(Y|do(K), X).
2. Rule 2: If Y ⊥⊥ T |(K ,X ) holds in GK ,T , then P(Y|do(K), do(T), X) = P(Y|do(K), T, X).
3. Rule 3: If Y ⊥⊥ T |(K ,X ) holds in GK ,T (X ), then P(Y|do(K), do(T), X) = P(Y|do(K), X).

Checking if a causal effect is identified requires the iterative use of these rules.We present several
examples of how to use the DoC method below.

6.2. Using Do-Calculus to Investigate the Roy Model

The first graph of Figure 5 presents the DAG of the original Roy model, which is denoted by G.
The second graph displays the DAG GZ which suppresses the arrow arising from Z. The LMC of

Original DAG G

V

YTZ

Derived DAG GZ

V

YTZ

Derived DAG GT

V

YTZ

Derived DAG GT,Z

V

YTZ

Figure 5

Using do-calculus to investigate the Roy model.
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Z on DAG GZ is Z ⊥⊥ (Y ,T ). From Rule 2 of the DoC, we obtain P(T|do(Z)) = P(T|Z). Summa-
rizing, we obtain

GZ ⇒ T ⊥⊥ Z ⇒ by Rule 2 we have P(T |do(Z)) = P(T |Z). 39.

Equation 39 indicates that Z is statistically independent of T when we fix Z. In the NR frame-
work, this refers to the exogeneity condition T (z) ⊥⊥ Z—namely, that the instrument Z is inde-
pendent of the counterfactual choice T(z). Instrument Z in DAGGZ is independent of both T and
Y. Thus, we can replace T by Y in Equation 39 to obtain P(Y|do(Z)) = P(Y|Z). This means that
conditioning on Z is equivalent to fixing Z. Indeed, the instrument Z is an external variable, and
the causal operation of fixing is translated to standard statistical conditioning.

The third graph of Figure 5 displays the DAG GT , which suppresses the arrow arriving at T.
The LMC of Z on GT implies Z ⊥⊥ (Y ,T ). By Rule 1 of the DoC, we have that P(Y|do(T), Z) =
P(Y|do(T)). Summarizing, we have

GT ⇒ Y ⊥⊥ Z|T ⇒ by Rule 1 we have P(Y |do(T ),Z) = P(Y |do(T )). 40.

This means that Z is statistically independent of Y when we fix T. This statement refers to the
exogeneity condition Y (t ) ⊥⊥ Z or the independence relationship Y ⊥⊥ Z|T̃ of the hypothetical
model framework.

The last graph of Figure 5 displays the DAG GT ,Z , which suppresses the arrow arriving at T
and arising from Z. Note that the DAGs GT ,Z and GT are the same. To repeat for emphasis,

GT ⇒ Y ⊥⊥ Z|T ⇒ by Rule 1 we have P(Y |do(T ),Z) = P(Y |do(T )). 41.

The LMC of Z in GT ,Z is Z ⊥⊥ (T ,Y ,V ) which implies that Y ⊥⊥ Z|T holds. Using Rule 2 of the
DoC, we obtain

GT ,Z ⇒ Y ⊥⊥ Z|T ⇒ by Rule 2 we have P(Y |do(T ), do(Z)) = P(Y |do(T ),Z). 42.

Combining P(Y|do(T), Z) = P(Y|do(T)) in Equation 41 with P(Y|do(T), do(Z)) = P(Y|do(T), Z)
in Equation 42, we obtain P(Y|do(T), do(Z)) = P(Y|do(T)). This means that the probability dis-
tribution of the outcome Y when we fix both Z and T is the same as the counterfactual outcome
generated by fixing only the choice T. In the NR framework, this property refers to the exclusion
restriction Yi(t, z) = Yi(t, z′) for all z, z′ ∈ supp(Z).

These statements exhaust the analysis of the Roymodel that can be performed usingDoC.The
method describes the properties of the Roymodel, but applications of its rules alone cannot deliver
identification of treatment effects. The type of assumptions that would secure the identification
of treatment effects in the Roy model is beyond the DAG representation.

6.3. The Front-Door Model

To make a more positive point, we apply the identification machinery of DoC to a causal model
where treatment effects are identified.We investigate the front-door model of Pearl (2009a). We
use this example to contrast the identification approaches of DoC with those of the hypothetical
model.

The front-door model of Equations 43–46 below consists of three observed variables T, M,
Y and an unobserved confounding variable V. Treatment T causes a mediator M, which in turn
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Front-door model G Derived DAG GT Derived DAG GM

V

M YT

V

M YT

V

M YT

Derived DAG GM Derived DAG GT,M Derived DAG GT,M

V

M YT

V

M YT

V

M YT

Figure 6

Using do-calculus to identify the causal effect of T on Y in the front-door model.

causes outcome Y. Confounding variable V causes T and Y but notM.24 We have

V = fV (εV ), 43.

T = fT (V , εT ), 44.

M= fM (T , εM ), 45.

Y = fY (M,V , εY ). 46.

The causal effect of T on Y in the front-door model is identified. This result arises from the
fact that the causal effect of T on M is not confounded by V, and therefore it is identified by
standard methods. Also, conditioning on T blocks the effect of the confounder V on M. Thus,
we can identify the causal effect of M on Y conditional on T. The causal effect of T on Y can be
evaluated as the compound effect of T onM andM on Y.

We illustrate how to use the DoC to identify the distribution of the counterfactual outcome
P(Y (t )) or, equivalently, P(Y |do(T ) = t ). For the sake of notational simplicity, suppose that all
variables are discrete. The DoC is cumbersome. The method requires the five derived DAGs
displayed in Figure 6. The identification formula of the counterfactual outcome is obtained by
the following sequence of steps.

1. T ⊥⊥ M in GT holds, thus by Rule 2 we have P(M|do(T)) = P(M|T).
2. M ⊥⊥ T in GM holds, thus by Rule 3 we have P(T|do(M)) = P(T).
3. M ⊥⊥ Y |T in GM holds, thus by Rule 2 we have P(Y|T, do(M)) = P(Y|T,M).
4. Collecting these results, we have that

∴ P(Y |do(M )) =
∑
t

P(Y |T = t, do(M ))P(T = t|do(M )),

which by the law of iterated expectations (LIE) equals∑
t

P(Y |T = t,M )P(T = t ).

5. Y ⊥⊥ M|T in GT ,M holds, thus by Rule 2 we have P(Y|M, do(T)) = P(Y|do(M), do(T)).

24As before, the error terms ϵV, ϵT, ϵM, ϵY in the front-door model of Equations 43–46 are mutually statistically
independent.
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6. Y ⊥⊥ T |M in GT ,M holds, thus by Rule 3 we have P(Y|do(T), do(M)) = P(Y|do(M)).
7. Collecting these results, we have that P(Y|Z, do(T)) = P(Y|do(Z), do(T)) = P(Y|do(M)).
8. Finally, we use the previous results to obtain the following equations:

∴ P(Y |do(T ) = t ) =
∑
m

P(Y |M = m, do(T ) = t )P(M = m|do(T ) = t ) by LIE;

=
∑
m

P(Y |do(M ) = m, do(T ) = t )P(M = m|do(T ) = t ) by Step 5;

=
∑
m

P(Y |do(M ) = m)P(M = m|do(T ) = t ) by Step 7;

=
∑
m

(∑
T=t ′

P(Y |T = t ′,M = m)P(T = t ′ )
)
P(M = m|T = t ) by Step 4.

6.4. Reexamining the Front-Door Model Using the Hypothetical Model

We now investigate the same front-door model using the hypothetical framework. Figure 7 dis-
plays the hypothetical model associated with the front-door model of Equations 43–46 as a DAG.

We seek to identify the counterfactual distribution of outcome P(Y(t)), or, equivalently,
Ph(Y |T̃ = t ). This means we seek to express Ph(Y |T̃ = t ) in terms of the observed distribution
Pe(T,M, Y). Identification requires us to connect the probability distributions of the hypothetical
and empirical models. To do so, we seek independence relationships in the hypothetical model
that includes T and T̃ . These are Y ⊥⊥ T̃ |(M,T ) andM ⊥⊥ T |T̃ .25 It is also the case that T ⊥⊥ T̃
holds, as T̃ is exogenous and does not cause T. We can then apply the rules of Equations 15 and
16 to connect the probabilities of the empirical and hypothetical models:

Y ⊥⊥ T̃ |(T ,M ) ⇒ Ph(Y |T̃ ,T = t ′,M ) = Pe(Y |T = t ′,M ), 47.

M ⊥⊥ T |T̃ ⇒ Ph(M|T̃ = t,T ) = Pe(M|T = t ), 48.

T ⊥⊥ T̃ |T ⇒ Ph(T = t ′|T̃ ) = Pe(T = t ′ ). 49.

The causal effect of T on Y of the front-door model is identified by

Ph(Y |T̃ = t ) =
∑
t ′ ,m

Ph(Y |m,T = t ′, T̃ = t )Ph(m|T = t ′, T̃ = t )Ph(T = t ′|T̃ = t ), 50.

=
∑
t ′ ,m

Pe(Y |m,T = t ′ )Pe(m|T = t )Pe(T = t ′ ). 51.

V

M YT

V

M Y

T

T̃

Empirical model Hypothetical model

Figure 7

The empirical and hypothetical front-door models.

25The first independence condition is due to the LMCs Y ⊥⊥ T̃ |M and (T̃ ,M ) ⊥⊥ (T ,V ). The second one is
due to the LMC ofM.
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Equation 50 is a sum of probabilities defined in the hypothetical model due to application of
the LIE over T and M. Equation 51 replaces each of the hypothetical model probabilities with
empirical model probabilities. We adopt the following short-hand notation:∑
m,t ′

P(Y |m,T = t ′ )P(m|T = t ) denotes
∑

m∈supp(M )

∑
t ′∈supp(T )

P(Y |M = m,T = t ′ )P(M = m|T = t ).

6.5. Understanding the Hypothetical Model Identification Criteria

The identification of the counterfactual outcomes in the front-door model stems from the three
independence relationships in Equations 47–49. These independence relationships comply with
two general properties that enable the identification of counterfactual outcomes.

The first property is called alternate conditionals. It refers to the fact that the first relationship
(Equation 47) establishes an independence regardingT conditional on T̃ . The second relationship
(Equation 48) establishes independence of T̃ conditional on T. The last one (Equation 49) cycles
back, and it is an independence relationship regarding T conditional on T̃ . This property enables
us to translate the probabilities of the hypothetical model into the probabilities of the empirical
model via the connection rules of Equations 15 and 16.

The property of alternate conditionals ascribes an alternating feature to the identification equa-
tion (51). The first term in Equation 51 is conditioned on T = t ′, which refers to the first condi-
tionalT in Equation 47.The identification equation (51) sums t′ over the support ofT.The second
term in Equation 51 is conditioned on the treatment value T = t, which refers to the second con-
ditional T in Equation 48. The value t remains fixed in the summation as it is the value used to
define the counterfactual (Y |T̃ = t ). The last term in Equation 51 alternates. It is conditioned on
T = t ′, which refers to the last conditional T in Equation 49, and t ′ varies in the summation.

The second property of the set of independence relationships is called bridging, and it refers
to the variables other than (T , T̃ ). The first independence relationship (Equation 47) starts with
the outcome Y and is conditioned on the variableM. The second relationship (Equation 48) starts
with M and is conditioned on no other variable besides T or T̃ . We say that variable M bridges
the path between Y and (T , T̃ ), that is,Y �M � (T , T̃ ).

In general terms, the bridging condition refers to a sequence of nested sets T1 ⊂ ... ⊂ TK of
observed variables in T such that the property of alternate conditionals holds. By this we mean
a sequence of conditional independence relationships that starts from Y ⊥⊥ T̃ |(T , TK ) [or Y ⊥⊥
T |(T̃ , TK )], then evolves to (TK \ TK−1) ⊥⊥ T |(T̃ , TK−1) [or (TK \ TK−1) ⊥⊥ T̃ |(T , TK−1)], and finally
ends in T1 ⊥⊥ T |T̃ [or T1 ⊥⊥ T̃ |T ].

Identification is secured whenever a set of conditional independence relationships among ob-
served variables in the hypothetical model presents the alternate conditionals and the bridging
properties.

Consider the complex mediation model of Figure 8. The model has three observed mediating
variables M1, M2, M3 and three unobserved, confounding variables V1, V2, V3. The following
conditional independence relationships hold for the hypothetical model:

Y ⊥⊥ T̃ |(T ,M3,M2,M1), 52.

M3 ⊥⊥T |(T̃ ,M2,M1), 53.

M2 ⊥⊥ T̃ |(T ,M1), 54.

M1 ⊥⊥T |T̃ . 55.
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Directed acyclic graph of the empirical model

V1 V2

T M1 M2 M3 Y

V3

Directed acyclic graph of the hypothetical model

T V1 V2

T M1 M2 M3 Y

V3˜

Figure 8

Using the hypothetical model to identify counterfactuals.

The set of independence relationships of Equations 52–55 is a case of alternate conditionals.
The first relationship is conditioned on T, the second on T̃ , followed by T, and so on.

The bridging property also holds. The right-hand variable of each independence relationship
gives the bridging sequence: Y � M3 � M2 � M1 � T. The LIE and the independence rela-
tionships of Equations 52–55 enable us to express the counterfactual probability Ph(Y |T̃ ) as

hypothetical model Ph(Y |T̃ = t ) = ∑
t ′ ,m3,m2,m1

Ah · Bh ·Ch ·Dh · Eh,

where Ah = Ph(Y |m3,m2,m1,T = t ′, T̃ = t ),
Bh = Ph(M3 = m3|m2,m1,T = t ′, T̃ = t ),
Ch = Ph(M2 = m2|m1,T = t ′, T̃ = t ),
Dh = Ph(M1 = m1|T = t ′, T̃ = t ),
Eh = Ph(T = t ′|T̃ = t ).

The connection rules of Equations 15 and 16 enable us to translate the hypothetical model
probabilities into empirical model probabilities. The identification equation displays the alterna-
tive pattern of values t and t′ in the same fashion as the identification equation of the front-door
model. We have

empirical model Pe(Y (t )) = ∑
t ′ ,m3,m2,m1

Ae · Be ·Ce ·De · Ee,

where Ae = Pe(Y |m3,m2,m1,T = t ′ ),
Be = Pe(M3 = m3|m2,m1, T = t),
Ce = Pe(M2 = m2|m1,T = t ′ ),
De = Pe(M1 = m1|T = t),
Ee = Pe(T = t′).

6.6. The Identification Expression

The DoC and hypothetical model generate equivalent but dramatically different expressions for
the same identified causal effect.We illustrate this fact using the causal model of Figure 9, which
is widely known in the DoC literature. The graph on the left depicts the observed variables of
the causal model using a DAG. It states that T causes Z1; Z2 causes T, Z1, Z3; and Y is caused by
T and Z3. The bi-directed dashed arrows represent the causal path of unobserved confounding
variables. The center graph in Figure 9 presents the equivalent empirical model, which explicitly
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Model as described
in DoC literature

Empirical model
in our notation

Hypothetical model
in our notation

T Z1 Y

Z2

Z3

T Z1 Y

Z2

Z3

V1

V2

V3

V4

T Z1 Y

Z2

Z3

T̃

V1

V2

V3

V4

Figure 9

Example of a well-known causal model in do-calculus (DoC) literature.

displays the unobserved confounding variables V1,V2,V3,V4. The graph to the right presents the
hypothetical model counterpart.

The following conditional independence relationships hold for the hypothetical model on the
right side of Figure 9:

Y ⊥⊥ T̃ |(T ,Z1,Z2,Z3
)
, 56.

Z1 ⊥⊥ T |(T̃ ,Z2,Z3
)
, 57.

(Z2,Z3) ⊥⊥ T̃ |T . 58.

The independence relationships of Equations 56–58 generate the bridging sequence Y �
Z1 � (Z2, Z3) �M1 � T, which generates the following identification expression:

Ph(Y |T̃ = t ) =
∑

t ′ ,z1,z2,z3

Pe(Y |z1, z2, z3,T = t ′ )Pe(z1|z2, z3,T = t )Pe(z2, z3|T = t ′ )Pe(T = t ′ ). 59.

Note that the values of T in the expression above (Equation 59) alternate from t′ to t. The iden-
tification expression generated by the DoC does not have this property. The DoC algorithm of
Bareinboim & Pearl (2016) generates the following identification expression:

P(Y (t )) =
∑

z1,z2,z3

P(z3, z2)P(z1|T = t, z2) ·
(∑

t ′ P(Y , z3|T = t ′, z1, z2)P(T = t ′, z2)∑
t ′ P(z3|T = t ′, z1, z2)P(T = t ′, z2)

)
P(z2). 60.

The expressions shown in Equations 59 and 60 appear to be substantially different. They are, in
fact, equivalent. Tikka & Karvanen (2017) have shown that the DoC expression (Equation 60) is
equivalent to

P(Y (t )) =
∑

z3,z2,z1

P(z1|z2,T = t )P(z2) ·
∑
T=t ′

P(Y |z2,T = t ′, z3, z1)P(z3|z2,T = t ′ )P(T = t ′|z2).

Moreover, the independence condition Z1 ⊥⊥ Z3|(T ,Z2) holds for the empirical model of
Figure 9. We can combine this information to show that
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P(Y (t )) =
∑

z3,z2,z1

P(z1|z2,T = t )P(z2)
∑
t ′
P(Y |z3, z1, z2,T = t ′ )P(z3|z2,T = t ′ )P(T = t ′|z2)

=
∑

z3,z2,z1

P(z1|z2,T= t )P(z2)
∑
t ′
P(Y |z2, z3, z1,T= t ′ )P(z3|z2,T = t ′ )

P(z2|T= t ′ )P(T = t ′ )
P(z2)

=
∑

z3,z2,z1

P(z1|z2,T = t )
∑
t ′
P(Y |z2, z3, z1,T = t ′ )P(z3|z2,T = t ′ )P(z2|T = t ′ )P(T = t ′ )

=
∑

z3,z2,z1

P(z1|z2, z3,T = t )
∑
t ′
P(Y |z2, z3, z1,T = t ′ )P(z3, z2|T = t ′ )P(T = t ′ )

=
∑

z3,z2,z1,t ′
P(Y |z2, z3, z1,T = t ′ )P(z1|z2, z3,T = t )P(z3, z2|T = t ′ )P(T = t ′ ).

The second equation uses Bayes’ theorem.The third equation cancels out P(z2). The fourth equa-
tion is due to Z1 ⊥⊥ Z3|(T ,Z2). The last equation rearranges the terms.

Finally, the independence relationships (Equations 56–58) of the hypothetical model in
Figure 9 would also hold if we were to suppress Z3, that is,

Y ⊥⊥ T̃ |(T ,Z1,Z2
)
,

Z1 ⊥⊥ T |(T̃ ,Z2
)
,

Z2 ⊥⊥ T̃ |T .

Thus, we can also express the counterfactual outcome probability Ph(Y |T̃ = t ) as

Ph(Y |T̃ = t ) =
∑
t ′ ,z1,z2

Pe(Y |z1, z2,T = t ′ )Pe(z1|z2,T = t )Pe(z2|T = t ′ )Pe(T = t ′ ). 61.

7. CONCLUSION

This article presents the framework of the econometric model for causal policy analysis. We dis-
cuss the definition of causal parameters and approaches to their identification within the econo-
metric framework. We consider two approximations to it and their relationship with the econo-
metric approach.

The econometric model is based on clearly stated and interpretable models of behavior that
adequately characterize the predictions of economic theory and allow for testing it; synthesizing
evidence on it frommultiple sources; constructing credible policy counterfactuals, including fore-
casting policy impacts in new environments; and forecasting the likely impacts of policies never
previously implemented.The econometric approach delineates the definition of causal parameters
and their identification as two separate tasks.

The two approximating approaches are the NR approach, rooted in the statistics of experi-
ments, and the DoC, which originated in computer science. Both are recent developments that
attempt to address some of the same problems tackled by the econometric approach. Each has
important, but different, limitations. Neither has the flexibility or clarity of the econometric
approach.

All start from the basic intuitive definition of a causal effect as a ceteris paribus consequence
of a policy change. However, the rules of constructing and identifying counterfactuals are very
different.

The DoC invokes a special set of rules for identifying causal parameters. It relies heavily on
recursive DAGs. Its rigid rules preclude the use of many traditional techniques of identification.
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The NR approach eschews the benefits of structural equations and many fruitful strategies for
their identification. Reflecting on its origins, it casts all policy problems into a treatment-control
framework. In some versions, it conflates issues of definition with issues of identification. Its lack
of reliance on structural equations makes it difficult to interpret estimates obtained from it or to
analyze well-posed economic questions with it.

Economics has a rich body of theory and tools to address policy problems. Applied economists
today would do well to use the impressive body of tools embodied in modern structural
econometrics.
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