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Abstract

This paper examines the econometric causal model and the interpretation of empir-

ical evidence based on thought experiments that was developed by Ragnar Frisch and

Trygve Haavelmo. We compare the econometric causal model with two currently pop-

ular causal frameworks: the Neyman-Rubin causal model and the Do-Calculus. The

Neyman-Rubin causal model is based on the language of potential outcomes and was

largely developed by statisticians. Instead of being based on thought experiments, it

takes statistical experiments as its foundation. The Do-Calculus, developed by Judea

Pearl and co-authors, relies on Directed Acyclic Graphs (DAGs) and is a popular

causal framework in computer science and applied mathematics. We make the case

that economists who uncritically use these frameworks often discard the substantial

benefits of the econometric causal model to the detriment of more informative analy-

ses. We illustrate the versatility and capabilities of the econometric framework using

causal models developed in economics.
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1 Introduction

Sound economic and policy analysis is causal analysis. It analyzes the factors that produce

outcomes and the role of various factors and policies in doing so. It quantifies policy impacts.

It elucidates the mechanisms producing outcomes in order to understand how they operate,

how they can be transported to different environments, how programs might be improved

and which, if any, alternative mechanisms might be used to generate desired outcomes. It

organizes evidence in interpretable frameworks. It uses all available information to give good

policy advice and explicitly recognizes any limitations of data or models.

Good economic science systematically explores possible counterfactual worlds. It is

grounded in thought experiments – what might happen if determinants of outcomes are

changed. Credible hypotheticals are developed, analyzed, and tested with real-world data.

Models and thought experiments are central to economic analysis. Persons trained in

economic theory or in the natural sciences routinely use them. Statisticians and computer

scientists have only recently come to grips with the causal questions that have long been

investigated by econometric pioneers such as Ragnar Frisch and Trygve Haavelmo. As a

result, private languages and procedures designed to do part of what rigorous econometric

models do have been developed without manifesting understanding of the full corpus of

econometric theory, often refusing to cite it and reinventing portions of it.

These private languages bear the marks of their recent birth: concepts are often not

precisely defined, and the conceptually distinct issues of definition of counterfactuals, their

identification, and their estimation are often tangled together. In some fields heavily influ-

enced by statistics, certain estimation techniques are claimed to be central for the definition

or identification of counterfactuals when, in fact, they are only devices for recovering coun-

terfactuals from data.

The current state of affairs would be of little concern if applied economists continued

to draw on and extend the standard econometric model. Sadly, this is not the case. Many



econometricians and applied economists now emulate what they read in statistics and com-

puter science journals. They have forgotten or never learned their own field’s foundational

work to the detriment of rigorous causal analysis and testing among alternatives.

This paper discusses econometric causal analysis and recently developed causal models

in fields outside economics. Our goal is to enhance the theory and practice of economic

policy analysis by testing and synthesizing evidence, as well as interpreting it. This involves

acquainting economists with a rich econometric legacy and situating recently advocated

causal frameworks within the broader context of the econometric model.1

The topic is broad and our paper is necessarily brief. We discuss some main points and

illustrate them with analyses of a few prototypical economic models used to address policy

problems and interpret evidence. It is impossible to convey here all of the insights of rigorous

econometrics developed in the past 90 years.

This paper unfolds in the following way. We first define the notion of causality within

a model. The concept is simple, but requires thought processes outside of statistics that

are, nonetheless, quite intuitive. We discuss four distinct classes of policy problems that are

addressed in econometric causal analyses. Some of them are either ignored or only partly

addressed in the recent non-economic causal literatures. We demonstrate the conceptual

clarity of the econometric approach and contrast it with that of rival approaches.

In particular, we consider two causal frameworks often advocated by statisticians and

computer scientists. The first is the Neyman-Rubin model (1923; 1958; 1974; 1986; 1996),

“NR” henceforward. It uses notions developed in rigorous econometrics but goes only part

way toward implementing the full set of tools in the econometric approach to causal analysis

and the interpretation of empirical evidence. It has important limitations for posing or

analyzing routine policy problems outside a narrow “treatment-control” paradigm. It ignores

1In this paper we focus on policy analysis but our message applies to a broader class of problems. The
models developed in this paper also apply to the tasks of hypothesis testing, statistical inference, and
synthesis of empirical evidence into interpretable evidence. Formulating meaningful alternatives is central
to power analysis or Bayesian tests among alternatives.
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the simultaneous equations model - a major achievement of econometrics - and replaces

it with a litany of “confounding biases” readily addressed in rigorous econometrics. We

also consider an approach to counterfactuals developed in computer science (“do-calculus,”

Pearl, 2012), henceforth “DoC,” that relies critically on directed acyclic graphs (DAGs) and

statistical conditional independence relationships. We demonstrate its limited capacity to

address many important economic questions and address important empirical problems or

to utilize many standard econometric estimation and identification tools.

Each of the recent approaches holds value for limited classes of problems. However, they

have severe limitations when applied to the broad array of problems economists routinely

confront. The danger lies in the sole reliance on these tools, which eliminates serious con-

sideration of important policy and interpretation questions. We highlight the flexibility and

adaptability of the econometric approach to causality, contrasting it with the limitations of

other causal frameworks.

For instance, the NR approach does not readily accommodate unobservables and restric-

tions on empirical relationships produced by economic theory, which are important compo-

nents of the econometric toolkit. Social interactions, peer effects, and general equilibrium

theory fall outside its purview, and are currently considered frontier-topics in those fields,

despite the existence of well-designed econometric tools that address these issues. These are

all standard problems addressed in structural econometrics.

Similarly, the DoC approach cannot deal with the functional restrictions and covariance

information routinely used in econometrics. It cannot accommodate assumptions such as

monotonicity and the separability restrictions, which are essential components of modern

instrumental variable analysis. The prototypical Generalized Roy model cannot be identified

with DoC, although it and more general models can be identified using standard econometric

tools.

This paper builds on our previous work in several ways. Heckman (2008a) and Heck-

man and Pinto (2015) discuss econometric causality but are less explicit than this paper
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in establishing links between formal econometric models and competing approaches. We

clarify the distinctions between the “do” operator of Pearl (2009b) and the “fix” operator of

Haavelmo (1943) and exposit much more clearly why causality is such a difficult concept for

statisticians.2 We introduce a new hypothetical model that uses probabilistic tools to ana-

lyze causal models without the artifices required in competing approaches. For example, we

disentangle the “SUTVA” assumption of the Neyman-Rubin model into an autonomy (struc-

tural invariance) assumption and an absence-of-general-equilibrium-effects assumption.3 We

provide concrete examples of the limits and benefits of alternative causal frameworks.

This paper is organized as follows. Section 2 defines causality and discusses the tasks of

causal inference. Section 3 presents the econometric model. Section 4 shows its versatility

and describes various identification approaches in the Generalized Roy model. Section 5

examines the Neyman-Rubin causal model and contrasts it with the econometric approach.

Section 6 investigates the Do-Calculus of Pearl (2009b). Section 7 examines non-recursive

models that are ruled out in the NR approach. Section 8 summarizes the paper.

2 Causality as a Thought Experiment

A formal definition of causality relies on a modification of the same thought process used to

define relationships mapping inputs X, that may contain unobserved terms, to outcomes Y

using a stable map g:

g : X → Y (1)

2We note that Haavelmo (1943, 1944) never uses the term “fix” in his analyses. However, he introduces
the notion of thought experiments in his 1943 and 1944 papers referring to them as idealized experiments.
In his 1943 paper, he discusses “hypothetical splitting” of the real economic world into separate spheres of
action. His example is a Keynesian consumption and investment function where he separates–hypothetically–
consumer and producer actions in the context and investment are jointly determined. Haavelmo was a student
of Ragnar Frisch, who defined the term econometrics and laid the foundations of econometric causal policy
analysis in two foundational studies (Frisch, 1930, 2009). Haavelmo (1944) refers extensively to Frisch’s
work and later essays on policy evaluation. He is credited with formalizing Frisch’s distinction between
hypothetical worlds (models) and empirical data. See also Bjerkholt and Dupont (2010) and Frisch (2009).

3The do-calculus explicitly uses autonomous structural relationships (Pearl, 2009b).
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A map is stable if changing its arguments over the domain of X preserves the map. Another

way to express this is Y = g(X), where g may be a multi-valued correspondence. An

elementary version of (1) is the linear model:

Y = α + βX. (2)

In this example, stability means that α and β don’t change when X is changed. This invari-

ance property is termed autonomy of relationships by Frisch (1938). It is a cornerstone of

causal analysis.4 Typical examples of autonomous relationships in economics are production

functions or demand equations.

A second fundamental concept in causality is directionality. The map g states that X

causes Y. Inverting this map (when possible) may produce a stable relationship, but it is, in

general, not causal.

The range of Y is a set of potential outcomes associated with X over its domain. The

map g may be either a function or a correspondence. For example, our analysis is applicable

to settings such as Nash games with multiple equilibria.5 Counterfactual outcomes Y (x)

refer to the potential values that Y takes across different values of X. The key idea in

causality is the notion captured in Alfred Marshall’s phrase, “ceteris paribus” –all other

else is equal.6 Comparisons of Y for different values of X – all other factors the same –

are defined as causal effects. They are conceptual thought experiments. This definition is

used explicitly in the econometric approach regardless of what is observed, the statistical

properties of X and Y , the specification of functional forms for g, or how X is manipulated

in any thought experiment. The Roy model (1951) is an early example of a model of two

potential outcomes associated with the income that the same person would earn in different

jobs. We use a generalization of it as an example prototypical model throughout this paper.

4Frisch (1938) defines autonomy of a function to mean functions that are “invariant” to changes in their
arguments. Hurwicz (1962) prefers the term “structural” to denote autonomous equations.

5See e.g., Mas-Colell et al. (1995); Tamer (2003)
6Marshall (1961)
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Issues of identification and estimation are important for making the concept of causality

empirically operational, but not for defining it. However, these auxiliary issues are sometimes

assumed to be paramount in defining casuality in the recent non-economic literatures. For

example, in an influential exposition of the Neyman-Rubin model, Holland (1986) insists

that causal effects are only defined for experimental manipulations of X. However, issues of

definition and estimation are fruitfully distinguished and are the hallmark of the econometric

approach. To make our discussion more concrete, an example from the standard toolkit of

empirical economics is helpful.

2.1 Regression: Conditional Expectation or Thought Experi-

ment?

Consider the standard workhorse of empirical economics.7 Anticipating empirical applica-

tions, we add the distinction between observed and unobserved variables that is strictly not

required for the definition of causal parameters. Consider the regression of Y on T where

(Y, T ) are observed and U denotes a variable that is not observed by the analyst:

Y = Tβ + U. (3)

In terms of (1), X = (T, U). If X is a vector of all possible causes of Y , (1) is an all

causes model and accommodates stochastic shocks. Coupled with stability, such a model

is convenient for transporting (1) to environments where different levels of T are at play

(forecasting) or in combining and summarizing evidence from different studies where T varies

(research synthesis).

A major source of confusion about causal models is that (3) is often defined by statisti-

cians as a model for describing statistical relationships between Y and T (see e.g., Holland,

1997; Pratt and Schlaifer, 1984). Doing so uses standard statistical tools to define empirical

7See Haavelmo (1943) for an early discussion of the distinction made in this section.
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relationships. Note that if conditional expectations exist, E(Y | T = t) = tβ+E(U | T = t).

In this approach, the statistical model could be equivalently defined as U = Y − Tβ.

The empirical association between T and Y operates through two channels: β and E(U |

T = t), unless T is mean independent of U . This approach introduces considerations about

the properties of random variables that are unnecessary for defining causality in contrast to

just defining an empirical regularity.

2.2 Thought Experiments

Another way to interpret Y = Tβ + U is to hypothetically vary T and U : (T, U) → Y

via Y = Tβ + U . This is not a statistical operation and lies outside standard statistics.8

Economists (and other scientists) use hypothetical models (thought experiments) to analyze

phenomena and explore possible relationships. These and other possible relationships are

not defined by causal operations, although they are estimated using statistical methods.

To clarify these ideas, it is helpful to introduce random variables ϵV , ϵT , ϵU which are

unobserved (by the analyst) and mutually statistically independent. They are external to

the model (exogeneous) and are not caused by T , U or Y .

Example 2.1. Consider four different possible causal models – all thought experiments:

Causal Model 1 Causal Model 2 Causal Model 3 Causal Model 4

T = fT (ϵT ) T = fT (ϵT , ϵV ) T = fT (ϵT , U) T = fT (ϵT )

U = fU (ϵU ) U = fU (ϵU , ϵV ) U = fU (ϵU ) U = fU (ϵU , T )

Y = Tβ + U Y = Tβ + U Y = Tβ + U Y = Tβ + U

In the first causal model, T does not cause U , nor does U cause T . Parameter β is the

causal effect of varying T on Y for a fixed value of U . Variables T and U are statistically

independent and the parameter β can be consistently estimated by OLS. In the second causal

8For an example of how confusing this concept is to statisticians, see Pratt and Schlaifer (1984) and
Holland (1997). Holland’s confusion is significant given that he was the person who formalized the “Rubin
model” (1986).
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model, T does not cause U , nor does U cause T . Parameter β is still the causal effect of T

on Y . However, T and U are not statistically independent because they share a common

confounding variable ϵV and the OLS estimator of β is biased. This model is sometimes called

a “common cause” model with ϵV being the common cause of T and U . The third causal

model differs from the second model because U causes T . Although the causal relations of

the second and third models differ, the causal effect of T on Y remains β. In these models,

T and U are not statistically independent and the OLS estimator is generally biased.9 The

fourth model describes the case where T causes U. In this case, the OLS estimator of the

parameter β does not, in general, describes the causal effect of T on Y since we need to

account for the effect of T on Y that operates through U. The OLS estimator is biased and

it evaluates a combination of the direct effect of T on Y and the indirect effect of T on Y

via U.

Using the standard regression model as a starting point blurs the logic of this thought

process. Econometrics textbooks commonly introduce causality in the context of the linear

model (3). In this approach, the identification of causal effects is often reduced to a statistical

property of the econometric model, namely, that causal effects can be assessed when variables

T and U are uncorrelated. It gives rise to the practice of defining causal effects as conditional

probability statements instead of statements about manipulating variables in a thought

experiment.

In fact, OLS is based on statistical assumptions that are void of any causal interpretation.

The OLS fitted value for the outcome Y conditioning on T = t evaluates the conditional

expectation E(Y | T = t) instead of the counterfactual expectation E(Y (t) | T = t), where

the counterfactual outcome Y (t) is the value of Y when T is externally set to a value t. The

causal content of the OLS model arises only when we invoke concepts such as fixing and

counterfactuals. These concepts are not part of the standard statistical toolkit. Whether or

9Thus, Y (t) ⊥⊥ T |U holds for the third model but not for the second model.
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not we can identify β in a sample is an entirely separate question from defining the causal

impact of T on Y .

Frisch, the founding father of modern econometric causal policy analysis, clearly under-

stood that the study of causality is an exercise in abstract thought, and that “Causality is

in the Mind”:

“. . . we think of a cause as something imperative which exists in the exterior world.
In my opinion this is fundamentally wrong. If we strip the word cause of its animistic
mystery, and leave only the part that science can accept, nothing is left except a certain way
of thinking. [T]he scientific . . . problem of causality is essentially a problem regarding our
way of thinking, not a problem regarding the nature of the exterior world.” — Frisch
(1930), p. 36

Stated differently, Frisch is saying causality is the outcome of a thought experiment, i.e.,

a model.

2.3 The Econometric Approach to Causality

The econometric approach to causality develops explicit hypothetical models where inputs

cause outcomes. A common context is the study of policy evaluations when economic agents

choose treatments that affect economic outcomes of interest. “Treatments” are inputs (the

T ) which need not be restricted to binary or discrete valued variables. The mechanisms

governing the choice of inputs is central to the study of the causal effect of treatment on

outcomes. Identification/estimation/interpretation of empirical counterparts to the hypo-

thetical counterfactuals require careful accounting of unobserved (by the analyst) variables

(U) that cause both input choice and outcomes. Structural econometric models do just

that.10

10Caricatures sometimes made in the non-economic literatures that the choices of inputs T involve highly
stylized rational choice models or perfect information are false (see, e.g., Morgan and Winship, 2015). Some
hypothetical models might maintain those assumptions, but such assumptions are in no way essential to the
enterprise.

11



2.4 Four Distinct Policy Questions

The econometric approach to causality distinguishes four distinct classes of policy problems

and addresses each of them, sometimes in the same analysis.11

P1 Evaluating the impacts of implemented interventions on outcomes in a given environ-
ment, including their impacts in terms of the well-being of the treated and society at
large. The simplest forms of this problem are typically addressed in the non-economic
literatures: does a program in place “work” in terms of policy impacts?

The non-economic literatures addressing P1 identify and estimate treatment effects (most

often average treatment effects) without investigating how they arise or whether alternative

programs might be better or even what “better” means. In terms of our linear equation

example, it seeks to know the sign and magnitude of β. However, most economic and policy

analysts seek greater generality for their findings. This leads to problem P2.

P2 Understanding the mechanisms producing treatment effects and policy outcomes.

This asks the analyst to investigate the causes of effects and is a central task of economic

theory and policy analysis.12 It embeds (3) in a model that explains how T operates (i.e.,

which factors explain the Y − T relationship). It goes beyond the coarse description of

“treatment” T to explicate the factors that produce Y . It links with P3 and P4 stated

below to consider how alternative mechanisms generate observed outcomes and can be used

to forecast policies going forward, or explain the findings of any given study in a particular

environment. P2 is also an integral part of the task of constructing alternatives to maintained

hypotheses and interpreting evidence using economic models.

11See Heckman (2008a).
12Holland (1986) features the narrow goal of investigating the “effects of causes” in his definition of the

Neyman-Rubin model.
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P3 Forecasting the impacts (constructing counterfactual states) of interventions imple-
mented under one environment when the intervention is applied to other environments,
including their impacts in terms of well-being.

This goes beyond P2 to interpret why outcomes vary among environments. It replaces

crude meta-analysis of treatment effects with principled explanations of mechanisms and

their impacts and extrapolates mechanisms to other environments to answer P1 in those en-

vironments.13 Structural models are useful vehicles for summarizing evidence from multiple

studies.14 Forecasting in new environments is a traditional problem in econometrics (see,

e.g., Theil, 1958; Hamilton, 2000; Chatfield, 2000). However, the truly ambitious problem

addressed by policy analysts is P4.

P4 Forecasting the impacts of interventions (constructing counterfactual states associated
with interventions) never previously implemented to various environments, including
their impacts in terms of well-being.

This is a fundamental challenge addressed in econometric policy analysis. This problem

motivated the creation of econometric causal models.15 It is also a central feature of the

scientific analysis of empirical regularities.

One impetus for the econometric structural approach was to conduct policy analysis for

the post-World War II era using models fit on data from the pre-World War II Depression era.

Econometric policy analysis is the vehicle for framing and addressing the likely impacts of

new policies and new environments, never previously experienced. Marschak (1953) provides

an insightful discussion of this task in the context of forecasting the impact of new economic

policies using data collected in environments in which the proposed policies were not in

place.16 The often-cited “critique” of Lucas (1976) updates Marschak’s policy analysis to

13Recent work in computer science has begun to reinvent the logic of econometric forecasting using its own
colorful private language but without any fresh insights or acknowledgement of a large body of econometric
thought (see, e.g., Bareinboim and Pearl, 2016).

14See, e.g., Bursztyn and Yang (2021) or Nerlove (1967).
15See Frisch (1930, 1933, 1938) and Tinbergen (1930).
16Knight (1921) succinctly states the problem and its solution in his enigmatic remark, “the existence of a

problem of knowledge depends on the future being different from the past, while the possibility of a solution of
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stochastic environments. McFadden (1974) is a Nobel-Prize winning example of how a

leading economist who successfully met this challenge in forecasting the demand for a new

transportation system in the San Francisco Bay area.

The econometric approach distinguishes three tasks of econometric causal policy analysis

that are often conflated in the non-economic statistical literatures:

Table 1: Three Distinct Tasks in Econometric Causal Analysis

Task Description Requirements Types of
Analysis

1: Model Creation Defining the class of
hypotheticals or
counterfactuals by thought
experiments (models)

A scientific theory: A
purely mental activity

Outside
Statistics;
Hypothetical
Worlds

2: Identification Identifying causal
parameters from
hypothetical populations

Mathematical analysis
of point or set
identification; this is a
purely mental activity

Probability
Theory

3: Estimation Estimating parameters
from real data

Estimation and testing
theory

Statistical
Analysis

Our regression example illustrates these distinctions. Models for counterfactuals do not

necessarily require any statistical analysis. Identification is a separate issue required to

recover β from hypothetical model distributions of data where statistical variation is not an

issue.17 Estimation, on the other hand, considers how to recover model parameters from

empirical sampling distributions where statistical variation is a concern. Trygve Haavelmo,

a student of Frisch, developed an empirically operational econometric framework for causal

analysis that distinguished these three tasks (1943; 1944).

the problem depends on the future being like the past.” Knight meant that analysts use ingredients estimated
on historical data to construct forecasts of the unknown. This is a task that involves judgements and insights
about invariant mechanisms beyond straight applications of fitted statistical models.

17Lewbel (2019) and Fisher (1966a) are definitive treatments of identification in economics.
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3 Econometric Causal Models

Econometric causal models are flexible frameworks that can be used to address a variety of

economic policy problems that are not naturally squeezed into simple “treatment-control”

frameworks. They go well beyond the narrow treatment effect literature to address the

following topics listed in Table 2 18 :

Table 2: Problems Addressed by Econometrics

(a) Investigate the causes of effects, not just the effects of causes – the goal of
the treatment effect literature announced by Holland (1986) in defining the
“Rubin model;”

(b) Interpret empirical relationships within economic choice and outcome frame-
works;

(c) Analyze data using a priori information from theory;

(d) Account systematically for shocks, errors by agents, and measurement errors;

(e) Analyze dynamic models;

(f) Accommodate multiple approaches to identification beyond randomization, in-
strumental variables, and matching that exploit restrictions within and across
equations on causal relationships produced by theory;

(g) Exploit restrictions across equations and unobservables within and across
equations to identify causal parameters;

(h) Make forecasts in new environments;

(i) Synthesize evidence across studies using common parameters embedded in
common conceptual frameworks rather than crude statistical meta-analysis;

(j) Make forecasts of new policies never previously implemented; and

(k) Analyze interactions across agents within markets and also within social set-
tings (general equilibrium and peer effects).

Econometric methodology for establishing causality is comprehensive and adaptable, as it

is specifically designed to address a wide array of causal questions pertinent to economics. In

18Table 2 is only a partial list of the rich array of problems addressed by the econometric approach.
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contrast, alternative causal frameworks are often not conceived with the specific investigative

needs of economists in mind. Consequently, these methods are typically tailored to address

only a specific subset of causal questions, primarily focusing on the application of a limited

range of techniques to specialized categories of problems, predominantly those within the

problem class P1.

Alternative methodologies, such as the NR approach, can be highly effective in analyzing

causal effects such as average treatment effects or the effect of treatment on the treated

within the contexts of Randomized Controlled Trials (RCTs). However, their utility becomes

markedly constrained when addressing the more complex causal questions mentioned in

Table 2. This is a consequence of Marschak’s Maxim (Heckman, 2008a) that for certain

narrowly focused problems, special versions of the econometric approach are highly effective.

One need not necessarily implement more general models that address a wider set of questions

when addressing specific focused problems. However, such models are by design, of limited

value in addressing wider classes of problems. We now state the econometric model formally

using the convenient tool of graph theory that is widely used in many branches of applied

mathematics.

3.1 Econometric Causal Models

Heckman and Pinto (2015) develop a causal framework that formalizes Frisch’s insight that

causality is the outcome of a thought experiment and places Haavelmo’s approach (1943;

1944) in the framework of more recent policy evaluation models. They distinguish an em-

pirical model that generates the observed data from a hypothetical model that formalizes the

thought experiments of manipulating inputs that defining causality. The empirical model

describes the data generating process, which differs from the hypothetical model which is

an abstract model that is a thought experiment. They place the definition and operational-

ization of causality in a probabilistically consistent approach that does not require special
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rules or procedures invented to characterize causality that are essential features of some of

the non-economic literature.

Some notation is useful in describing the framework. We borrow it from the literature in

applied mathematics. Dawid (1979) is a major source of conditional independence relation-

ships. Lauritzen (1996) is a concise treatment of the graph theory we use.

3.2 A Causal Model

A causal modelM is a system of policy-invariant (autonomous) structural equations like (1)

that characterize the mapping M : T → P(T ) between a set of variables T and its power

set P(T ). Elements in T are random variables or random vectors that may be observed

or unobserved by the analyst. It is convenient to define the set E = {ϵK ;K ∈ T } which

contains an error term ϵK for each K ∈ T . Error term ϵK shares the same dimension as

K. This variable is assumed present even if there are additional unobserved variables. This

formal device allows us to avoid degenerate random variables so standard tools of probability

theory can be used.

A structural equation for a variable K ∈ T is an autonomous function denoted by

fK : (M(K), ϵK) → R|K|. Variables in M(K) are said to directly cause K. In recursive

formulations, a variable cannot directly cause itself, that is, K /∈ M(K) for all K ∈ T . We

relax recursivity in a later section, where we discuss simultaneous equation models in which

sets of outcome variables are jointly determined.

A variable T not caused by any variable, so M(T ) = ∅, is called external. In this case,

its structural function is given by T = fT (ϵT ). Error terms are externally-specified (i.e.,

exogenous). This means that error terms in set ε are not caused by any variable in T . We

impose, without loss of generality, that error terms are mutually statistically independent.19

19The independence among error terms comes without loss of generality as any dependence structure could
be modeled via other unobserved variables in T .
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All variables are defined on a common probability space (I,F , P ), using standard notation

for σ - algebras.

3.3 The Generalized Roy Model

We use the Generalized Roy model as our leading example of a structural model. It is a

cornerstone of the literature in applied economics and policy evaluation.20 The original Roy

model of counterfactuals (1951) analyzed earnings inequality in two sectors of the economy.

All persons have two potential incomes: Y (0) in Sector 0 and Y (1) in Sector 1. Agents

choose sectors based on their perceived net benefit I. In the simplest case, the benefit is the

income gain I = Y (1) − Y (0). More general models allow for costs, like tuition, migration

costs, and psychic costs of participation. Potential incomes (Y (0), Y (1)) depend on observed

variables X while benefit I may depend on Y (1), Y (0), and X and an externally specified

variable Z, which may be policy variables that influences participation costs. The agent’s

choice of sector is given by T = 1[I(X,Z) > 0]. The model has been generalized to analyze

multiple sectors and dynamic discrete choices (see Abbring and Heckman, 2007; Heckman

and Vytlacil, 2007a,b).

The most common form of the model is:

Y (1) = g1(X) + U1 (4)

Y (0) = g0(X) + U0 (5)

C = gc(Z,X) + Uc (6)

T = 1[Y (1)− Y (0)− C ≥ 0]. (7)

g1, g0, and gc are autonomous functions. The variables X are observed and cause the

outcome and choices. Variable Z serves as an instrumental variable. It is not an argument

of the outcome equations. Variables U1, U0, and Uc are exogenous and unobserved variables

20See, e.g., Heckman and Taber (2008); Heckman and Vytlacil (2007a,b).
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that are statistically independent of Z,X, namely, (U1, U0, Uc) ⊥⊥ (X,Z).21 Choice theory as

embodied in (7) helps in determining relevant variables Z which can serve as instrumental

variables.

The individual level treatment effect is Y (1) − Y (0). The evaluation problem arises

because for each person we observe either Y (0) or Y (1), but not both. We observe Y (1) if

T = 1 and Y (0) if T = 0, namely Y = T · Y (1) + (1− T ) · Y (0).22

Z affects Y only through its influence on T . The typical analysis reformulates the analysis

at the population level rather than at the individual level. A common parameter of interest

is the average treatment effect ATE = E(Y (1)− Y (0)) which is the mean treatment effect

across all agents. Treatment on the treated focuses on TOT = E(Y (1) − Y (0)|T = 1).

The probability distribution of the counterfactual outcomes Y (t); t ∈ {0, 1} are sometimes

investigated.

The Generalized Roy model has been extended in many ways.23 The model is systemati-

cally ignored in the non-economic literatures, despite its intellectual priority and relevance.24

The Generalized Roy model allows for multiple choices. It can account for subjective eval-

uations of the benefits of each choice by subsuming variables U1, U0, Uc, in an unobserved

random vector V that causes both T and Y (see Heckman and Pinto, 2018; Heckman and

Vytlacil, 2007a,b).

A simple yet general representation of the Generalized Roy model comprises four random

variables T = {Z, V, T, Y }, where Z is an instrumental variable that causes an outcome Y

only through its effects on a treatment choice T. The variable V denotes an externally-

21This independence relationship may also take the form of the conditional independence (U1, U0, Uc) ⊥⊥
Z|X.

22This switching regression relationship was first used by Quandt (1958). See also Quandt (1988).
23For instance, Heckman and Vytlacil (2007a) investigate multiple versions of the original model. Heckman

et al. (2008) extend the model to ordered and general unordered choice models. Heckman and Pinto (2018)
and Lee and Salanié (2018) investigate the case of unordered multiple choice models with multi-valued
treatments. Abbring and Heckman (2007) consider dynamic discrete choice models in this framework.

24See e.g., Holland (1986); Imbens and Rubin (2015); Pearl (2009b, 2012); Rubin (1974, 1978).
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specified (exogenous) and unobserved confounding variable that causes both T and Y.25 In

the context of the Generalized Roy model, Z stands for external policy or “shifter” vectors.

V is a source of selection bias as it induces covariation between choice T and outcome

Y that is not due to the causal effect of the treatment T on the outcome Y. For now, we

suppress theX variables for the sake of notational simplicity. Table 3 displays four equivalent

representations of the Generalized Roy model.

Table 3: Representations of the Generalized Roy Model

Variable Map Structural Eq. DAG LMC

Z M(Z) = ∅ Z = fZ(ϵZ)
V

T YZ

Z ⊥⊥ V |∅
V M(V ) = ∅ V = fV (ϵV ) V ⊥⊥ Z|∅
T M(T ) = {Z, V } T = fT (Z, V, ϵT ) T ⊥⊥ ∅|(Z, V )
Y M(Y ) = {T, V } Y = fY (T, V, ϵY ) Y ⊥⊥ Z|(T, V )

The first column of Table 3 lists the variables of the Roy model. The second column

describes the causal model as a mapping of the variable set. The third column displays the

corresponding structural equations. The fourth column displays the model as a Directed

Acyclic Graph (DAG), where arrows denote causal relationships, circles denote unobserved

variables, and squares denote observed variables.26 To avoid clutter, we keep the ϵ implicit.

The last representation of Table 3 uses a property called the Local Markov Condition

(LMC).27 Some notation is necessary to state the condition. The language of Bayesian

networks uses the term parents of K for the variables that directly cause K, that is M(K).

Children of K comprise the variables directly caused by K, namely, Ch(K) = {J ∈ T ;K ∈

M(J)}. The descendants of a variable K, D(K), include all variables that are directly or

25Choice T may be binary, discrete or continuous and the confounder variable V can denote a random
vector of arbitrary dimension.

26We refer to Lauritzen (1996) for background on DAGs and Bayesian Networks.
27See Kiiveri et al. (1984); Pearl (1988) for further information on the Local Markov Condition.
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indirectly caused by K. These include all the subsequent iterations of the children of K.28 A

causal model is recursive (acyclic) if no variable is a descendant of itself.

The LMC is a property of recursive models stating that a variable is independent of its

non-descendants conditioned on its parents.

LMC: K ⊥⊥ (T \D(K))|M(K) (8)

For instance, outcome Y has no descendants and its parents are {V, T}. Thus its LMC is

Y ⊥⊥ Z | (T, V ), as listed in the last row of Table 3. Z has no parents and its descendants are

T , Y . The set of LMC for all variables in T fully characterizes the causal model. Additional

independence relationships may be generated by the Graphoid Axioms29 of Dawid (1976) or

through graphical methods such as the d-separation criteria of Geiger et al. (1990).

3.4 Counterfactual Approaches: Formalizing Frisch’s Insight

Frisch’s statement that “Causality is in the Mind” means that the causal analysis of treat-

ment T relies on a thought experiment that assigns values to the treatment variable in a

fashion external to the system analyzed. This hypothetical manipulation of T affects only

the variables caused by T . Specifically, changing T affects its descendant Y but not its

ancestors V , Z.

28Notationally, for any subset T̃ ⊂ T , let Ch(T̃ ) be the union of the children of all the variables in T̃ , that
is, Ch(T̃ ) = ∪K∈T̃ Ch(K). The descendants of K is the smallest set D(K) ⊂ T that contains the children of
K, Ch(K) ⊂ D(K), and its own children, Ch(D(K)) = D(K).

29Dawid (1976) defines Graphoid Axioms consist of six rules that apply for any disjoint sets of variables
X,W,Z, Y ⊆ T :

(A)Symmetry: X ⊥⊥ Y | Z ⇒ Y ⊥⊥ X | Z.
(B)Decomposition: X ⊥⊥ (W,Y ) | Z ⇒ X ⊥⊥ Y | Z.
(C)Weak Union: X ⊥⊥ (W,Y ) | Z ⇒ X ⊥⊥ Y | (W,Z).

(D)Contraction: X ⊥⊥ W | (Y, Z) and X ⊥⊥ Y | Z ⇒ X ⊥⊥ (W,Y ) | Z.
(E)Intersection: X ⊥⊥ W | (Y,Z) and X ⊥⊥ Y | (W,Z) ⇒ X ⊥⊥ (W,Y ) | Z.
(F)Redundancy: X ⊥⊥ Y |Z ⇒ X ⊥⊥ Y |Z.
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Frisch’s thought experiment is conceptually simple. However, it is a causal operation

outside the scope of statistical theory. In statistics, random variables are fully characterized

by their joint distributions. This information by itself is insufficient for causal analysis as it

lacks directionality – a central feature of causal models. Frisch’s thought experiment uses

additional information on causal direction when it partitions the variables studied into those

caused by T and those that are not.

Frisch’s thought experiment was formalized through the use of the “fix” or “set” operator

implicit in the seminal work of Haavelmo (1943). Counterfactual outcomes are obtained by

the hypothetical (external) manipulation of the targeted variable that causes the outcome

of interest. In the Roy model, the counterfactual outcome Y (t) is obtained by fixing the

T -input of the outcome equation to a value t ∈ supp(T ) so that Y (t) = fY (t, V, ϵY ). Fixing

only affects the outcome equation. It substitutes the treatment random variable T by the

treatment value t. It makes all descendants of T functions of the fixed value of T = t. It

does not eliminate the equation for T from the causal model nor does it modify the choice

equation T = fT (Z, V, ϵT ).

The do-operator of Pearl (1995, 2012) operates in a fashion similar to fixing as it sub-

stitutes all T -inputs from structural equations of the variables directly caused by T. The

do-operator differs from fixing by deleting (“shutting down”) the structural equation for

the treatment variable T, which effectively suppresses the determining equation of random

variable T from the causal model and replaces it with a fixed value T = t that affects

all descendent relationships. Eliminating this equation excludes the possibility of defining

parameters like TOT that condition on T .

Neither fix nor do are well-defined in statistics. They are causal operators that only

affect the distribution of the descendants of the variable being fixed. In contrast, statistical

conditioning affects the distributions of all variables that are not statistically independent

of the conditioning variable. Fixing T in the Roy model affects the outcome Y but does

not impact the confounder V or the instrument Z, which remain statistically independent.
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Conditioning on T , on the other hand, alters the distributions of Z and V , which are no

longer statistically independent.

Heckman and Pinto (2015) develop a causal framework that expresses the causal oper-

ations of fixing or doing in a framework using standard statistical tools. They distinguish

the empirical model that generates observable data from a hypothetical model that is used to

formulate the thought experiments involving the manipulation of inputs determining causal-

ity. The hypothetical model is an abstract model (thought experiment) that shares the same

structural equations and the same distributions of error terms as the empirical model. It

differs from the empirical model by appending a hypothetical variable T̃ that replaces the

T -input affecting descendants of T . The hypothetical variable captures the causal notion of

an external manipulation of treatment. The hypothetical model operates downstream of T

and translates the causal operation of fixing T into the statistical operation of conditioning

on T̃ .

Notationally, we use Te, Ee, Me, Pe, Ee for the variable set, error terms, causal model,

probability, and expectation of the empirical model, while Th, Eh, Mh, Ph, Eh denote the

counterparts in the hypothetical model. The hypothetical model replaces all T -inputs. In

this case, the hypothetical and empirical model are related in the following fashion: (1) the

hypothetical model has an additional variable T̃ , Th = Te∪{T̃}; (2) the hypothetical variable

causes all descendants of T,Mh(K) = (Me(K)∪{T̃})\{T} for all K ∈ De(T ); (3) variable T

has no descendants in the hypothetical model, that is, Dh(T ) = ∅; (4) all remaining causal

relations stay the same, that is, Mh(K) =Me(K) for all K ∈ Te \ {De(T ) ∪ {T}}.

It is useful to illustrate these ideas using the Generalized Roy Model. For notational

clarity, we use Me for the empirical (original) model, Mfix for the model that applies the

fix -operator, Mdo for the do-operator, and Mh for the hypothetical model. We also use

the subscripts e, fix, do, h for the probability distributions, expectations associated to each

model. Table 4 displays the Roy model for each of these frameworks.
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The first column of Table 4 presents the original empirical model. The second and

third columns present the models generated by the fix and the do operators respectively.

Both models constraint the T -input of the outcome equation by a value t ∈ supp(T ). The

main difference between these models is that fix retains the equation for treatment while do

suppresses it. The hypothetical model is displayed in the last column of Table 4. It replaces

the T -input of the outcome equation with an external hypothetical variable T̃ .

The first panel presents the structural equations of each approach. The second panel

display the models as DAGs. The third panel describes the independence relationships

generated by each causal model, and the last panel of the table presents the factorization of

the joint distribution of the model variables. We use Pe for the probability distribution of the

empirical model, Pfix for the model generated by the fix operator, Pdo for the do operator

and Ph for the hypothetical model. The factorizations differ according to the number of

variables and causal relations of each counterfactual model.

The empirical (Me), fix (Mfix), and hypothetical (Mh) models share the same distribu-

tions of error terms ϵZ , ϵV , ϵT , ϵY . Therefore the joint distribution of non-descendant T, that

is (V, Z), is the same across these models. The do model eliminates the error term ϵT , and

the distribution of T is not defined.

The structural equation for the counterfactual outcome Y (t) in the fix or do models

depends only on V and ϵY and thus the models have the same distribution of Y (t). The hy-

pothetical variable T̃ enables us to circumvent the necessity of introducing a special causal

operator. The variable has no parents and, according to the LMC (8), it is independent of

all its non-descendants, T̃ ⊥⊥ (T, V, Z). In particular, T̃ ⊥⊥ T always hold for any hypo-

thetical model Mh. T̃ is also statistically independent of error terms ϵZ , ϵT , ϵV , ϵY , and the

counterfactual outcome is obtained by simply conditioning on T̃ . In summary, we have that:(
Y | T̃ = t

)
Mh

d
=

(
Y (t)

)
Mfix

d
=

(
Y (t)

)
Mdo

. (9)

It is also the case that equation (9) holds when conditioned on any variable K that is

non-descendant variable of T̃ , namely, Z, V and T.
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To fix ideas, let T be an indicator of college graduation and Y denote adult income.

Treatment-on-the-treated (TOT ) is the average causal effect of college on income for those

who choose to go to college (T = 1), which is TOT = Efix(Y (1) − Y (0) | T = 1) using

the fix operator. The parameter is equivalently described as TOT = Eh(Y | T̃ = 1, T =

1) − Eh(Y | T̃ = 0, T = 1) using the hypothetical model. The do operator excludes the

treatment variable T, which poses a challenge in defining the TOT parameter. Shpitser and

Pearl (2009) solve this issue by adding additional special structure to their counterfactual

model.

Equation (9) may suggest that the way that counterfactuals are expressed is of little

relevance in the study of causality. That assessment is quite misleading. Small differences

in characterizing counterfactuals have significant consequences for the machinery used to

identify causal effects. Section 6 illustrates the difference between an identification analysis

using the do-calculus and an identification analysis using the hypothetical model framework.

Section 5 compares identification in NR with identification in the structural model.

3.5 Identification of Counterfactual Outcomes

We next consider Task 2 in Table 1. Counterfactuals are said to be identified if they can

be expressed in terms of the observed data generated by the empirical model Me. This task

requires us to connect the probability distribution (or expectation) of counterfactual variables

with the population distributions of the empirical model. The mechanics for establishing this

connection depends on which causal model is used to describe counterfactuals.

First consider the fix operator of model Mfix in Table 4. The LMC of Y (t) in Mfix

implies that:

Y (t) ⊥⊥ T |V. (10)
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Equation (10) states that the counterfactual outcome Y (t) is independent of the treat-

ment variable T conditional on the confounding variable V. This relationship is an example

of a matching condition. It helps identify treatment effects as it connects the counterfactual

outcome Y (t) in Mfix with the empirical model Me :

Pfix

(
Y (t) | V

)
= Pfix

(
Y (t) | V, T = t

)
, (11)

= Pfix

 ∑
t∈supp(T )

1[T = t]Y (t) | V, T = t

 , (12)

= Pfix

 ∑
t∈supp(T )

1[T = t]fY (t, V, ϵY ) | V, T = t

 , (13)

= Pfix

(
fY (T, V, ϵY ) | V, T = t

)
, (14)

= Pe

(
Y | V, T = t

)
. (15)

Equations (11)–(15) use structural equations to express the probability distribution of

the counterfactual outcome Y (t) inMfix with the distribution of the outcome Y in empirical

model Me. The first equation (11) is due to the matching condition (10). Equations (11)–

(14) apply the definition of the structural equations. The last equation (15) uses the fact

that variables T, V, ϵY share the same distribution in both models Mfix and Me.

The hypothetical model Mh offers criteria that enable analysts to connect the counter-

factual and empirical distributions in a systematic manner. For any disjoint set of variables

Y,W in Th \ {T, T̃} and any values t, t′ ∈ supp(T ) we have that:30

Y ⊥⊥ T̃ | (T,W ) ⇒ Ph

(
Y | T̃ = t, T = t′,W

)
= Ph(Y | T = t′,W ) = Pe(Y | T = t′,W ), (16)

Y ⊥⊥ T | (T̃ ,W ) ⇒ Ph

(
Y | T̃ = t, T = t′,W

)
= Ph(Y | T̃ = t,W ) = Pe(Y | T = t,W ). (17)

Equations (16)-(17) state two conditions that involve independence relationships in the

hypothetical model. They state that we can switch from the hypothetical to the empiri-

30See Heckman and Pinto (2015) for a proof. The criteria (16)–(17) still holds if the values t, t′ ∈ supp(T )
were replaced by subsets A,A′ ⊂ supp(T ) respectively.
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cal model whenever the hypothetical model yields the independence relationships (16) and

(17).31

The application of these rules is simple. For example, the LMC of Y in Mh of Table 4

generates the following matching condition:

Y ⊥⊥ T |(T̃ , V ). (18)

Thus, according to (17), we have that Ph(Y | T̃ = t, V ) = Pe(Y | T = t, V ).

The hypothetical framework gives a systemic approach for connecting hypothetical and

empirical models. The framework employs additional structure beyond what is obtained from

fixing that might not be required in analyzing the simple Roy model. Section 6 explores more

complex models where the additional complexity of the hypothetical framework is warranted.

The do operator does not generate a matching condition such as (10) or (18) because

the equation for treatment T is absent. Instead, the do-calculus of (Pearl, 2009b) checks

for matching conditions using a DAG-based analysis called the “back-door” criterion Pearl

(1993). The method employs special jargon that may be obscure to most economists. The

criterion is part of the do-calculus, which consists of a set of DAG-oriented techniques that

enables us to systematically examine the identification of causal effects. The method is

general in the sense that it applies to any DAG, but limited in the sense that it does not

accept identifying assumptions outside the DAG terminology. We discuss the do-calculus

machinery, its benefits and limitations in Section 6.

The counterfactual models Mfix,Mh and Mdo employ distinct techniques to generate

the same conclusion: that identification of the counterfactual outcome requires analysts to

control for the confounding variable V. Summarizing, we have that:

Pfix(Y (t) | V ) = Ph(Y | T̃ = t, V ) = Pdo(Y (t)|V ) = Pe(Y | T = t, V ). (19)

If V were observed, we would be able to evaluate the expected value of the counterfactual

outcome expectation, Eh(Y | T̃ = t), by integrating the observed expectation Ee(Y | T =

31See Heckman and Pinto (2015) for further discussion of the connection between empirical and hypothet-
ical models.
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t, V ) over the support of V. The econometric literature provides a rich menu of strategies to

control for the confounding variable V. We discuss part of this menu in the next section.

4 Econometric Approaches to Identification of Coun-

terfactuals in the Generalized Roy Model

The Generalized Roy model is a framework for exploring the large toolkit of the econometric

approaches for identifying counterfactuals. We compare what is possible in the econometric

approach with what can be obtained using the non-econometric paradigms. We describe

several of these approaches here. We develop this discussion further in subsequent sections

of this paper.

Equation (19) states that the identification of causal effects in the Generalized Roy model

hinges on controlling for the unobserved confounding variables V . A popular approach to

doing so uses instrumental variables that are independent of V . It controls for V by shifting

T without affecting the distribution of V. However, the IV approach using Z as an instrument

does not identify interesting counterfactuals without additional assumptions.

For a simple example, consider a linear model in which the structural treatment equation

is T = α0+α1Z+α2V +ϵT , and the outcome function is Y = β0+β1T +β2V +ϵY , where α0,

α1, α2, β0, β1, β2 are scalar parameters. In this model, the causal effect of T on Y is given

by β1 and is identified by the covariance ratio cov(Y, Z)/cov(T, Z). This parameter can be

estimated by a Two-Stage Least Squares (2SLS) Regression. This tool has been available to

economists since the 1950s.32

However, the Generalized Roy model is not captured by this simple two-equation system.

The causal effect, Y (1)− Y (0) is, in general, a random variable and not a constant so that

treating β1 as a constant does not capture essential heterogeneity of treatment effects across

32See Amemiya (1985); Hansen (2022); Theil (1953, 1958, 1971). Theil (1953) invented this method. The
method is far more general and applies to nonlinear models as well.
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agents.33 The analogue to heterogeneous β1 is stochastically dependent on V . There are

numerous approaches to identifying its distribution. We start with the use of instrumental

variables in the presence of heterogenous treatment effects and then consider alternative

approaches.

4.1 Instrumental Variables

Heckman and Vytlacil (1999, 2005) address the question of identifying the Roy model by

assuming a separable choice equation. Their approach enables analysts to control for V and,

in turn, identify counterfactual outcomes. Their local Instrumental Variable (LIV) approach

considers a binary treatment T ∈ {0, 1}. Their separability assumption is motivated by

economic choice theory and states that treatment is given by a latent threshold-crossing

equation that includes instrument Z and the confounder V ; that is, T = 1[ζ(Z) ≥ ϕ(V )].

Separability enables them to rewrite the choice equation as:

T = 1
[
P (Z) ≥ U

]
; P (Z) = Pe

(
T = 1 | Z

)
, (20)

where the probability of treatment selection P (Z) = Pe(T = 1 | Z) is sometimes called the

propensity score. The unobserved variable U is given by U = Fe,ϕ(V )(ϕ(V )) where Fe,ϕ(V )

is the cdf of ϕ(V ), which is monotone increasing by construction. Subscript “e” denotes

that the probability distribution is constructed using the empirical model. Variable U has

a uniform distribution if ϕ(V ) is absolutely continuous; that is, U ∼ unif([0, 1]). The

structural approach uses unobservables. The Neyman-Rubin approach does not. The do-

calculus uses them, but in a limited way. We show in Section 6 that it rules out exploiting

the information used to obtain (20). This approach to unobservables precludes the use of

methods that are fruitful in the econometric approach.

33A heterogeneous treatment effect case would write β1 = (Y1 − Y0) and β0 = Y0.

30



The hypothetical and empirical models for the Generalized Roy model that include the

unobserved variable U are displayed in Table 5. The LMC of T in the hypothetical Roy model

of Table 5 implies that Y ⊥⊥ T | (Z, T̃ , U). The LMC of Z implies Y ⊥⊥ Z | (U, T̃ ). These

two independence relationships imply, by contraction property D, that Y ⊥⊥ T | (T̃ , U).

Following the same analysis of V as (19), Y ⊥⊥ T | (T̃ , U) implies that:

Ph(Y | T̃ = t, U) = Pfix(Y (t) | U) = Pdo(Y | T = t, U). (21)

Otherwise stated, controlling for U enables analysts to identify counterfactual outcomes

in the same fashion that controlling for V does. Variable U is called a balancing score for V .

This means that U is a surjective function of V that preserves the independence relationship

Y ⊥⊥ T | (T̃ , V ) ⇒ Y ⊥⊥ T | (T̃ , U).34

Table 5: Binary Choice Roy Model: Empirical and Hypothetical Causal Models

Empirical Model Hypothetical Model

VU

T YZ

VU

T YZ T̃

LMC LMC

V : V ⊥⊥ Z V ⊥⊥ (Z, T̃ )

Z : Z ⊥⊥ (U, V ) Z ⊥⊥ (V, U, Y, T̃ )

U : U ⊥⊥ Z | V U ⊥⊥ (Y, Z, T̃ ) | V
T : T ⊥⊥ V | (Z,U) T ⊥⊥ (T̃ , V, Y ) | (Z,U)
Y : Y ⊥⊥ (Z,U) | (T, V ) Y ⊥⊥ (Z,U, T ) | (T̃ , V )

T̃ : (not defined for the model) T̃ ⊥⊥ (T, V, U, Z)

The Local Instrumental Variable (LIV) model of Heckman and Vytlacil (1999) can be

used to identify probability distributions of counterfactual outcomes conditioned on U by

taking the derivative of the observed outcome with respect to the propensity score. More

generally, the counterfactual expectation Efix(g(Y (t)) | U = u) for any real-valued function

34The balancing score was introduced by Rosenbaum and Rubin (1983).
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g : R → R is identified if there is sufficient variation of propensity score P (Z) around the

value u ∈ (0, 1).

Identification of Eh(g(Y | T̃ = t, U = u) comes from the derivative of the expectation

(−1)1−tEe(g(Y )1[T = t] | P (Z)) with respect to the propensity score at the value P (Z) = u.

In particular, it can be shown that:

Eh

(
Y | T̃ = 1, U = u

)
− Eh

(
Y | T̃ = 0, U = u

)
≡ Efix

(
Y (1)− Y (0) | U = u

)
=
∂Ee(Y | P (Z))

∂P (Z)

∣∣∣∣
P (Z)=u

(22)

where fix refers to the distribution generated by fixing (which is the same as that generated

by “doing”) and e refers to the sample distribution. Identification requires sufficient variation

of the propensity score P (Z) around u ∈ [0, 1]. If P (Z) has full support, the average

treatment effect can be evaluated by ATE ≡ Eh(Y | T̃ = 1)− Eh(Y | T̃ = 0) =
∫ 1

0

(
Eh(Y |

T = 1, U = u)− Eh(Y | T = 0, U = u)
)
du.

4.2 Stratification

A recurrent theme in this section is that identification of counterfactual outcomes hinges on

controlling for the confounding variable V. The solution of the LIV model invokes separa-

bility assumption (20) which generates a balancing score U for V. According to (23), the

nonparametric point-identification of the counterfactual outcomes conditioned on U = u is

obtained by differentiating the outcome with respect to the propensity score P (Z) at value

u ∈ (0, 1).

Equation (22) assumes that the sample propensity score has enough variation around the

value u ∈ (0, 1). Consequently, the equation is not directly applicable to the case of discrete

instruments. One approach to overcoming this limitation is to use the discrete counterpart

of equation (22). Heckman and Vytlacil (2005) show that for any two values z, z′ ∈ supp(Z)

such that P (z′) = u′ > u = P (z) we have that:
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Ee(Y | Z = z′)− Ee(Y | Z = z)

Pe(T = 1 | Z = z′)− Pe(T = 1 | Z = z)
=

∫ u′

u
Efix

(
Y (1)− Y (0) | U = u

)
du

u′ − u

= Efix(Y (1)− Y (0) | u ≤ U ≤ u′).

(23)

Equation (23) states that difference of mean outcomes conditional on two instrumental

values z, z′ identifies the counterfactual outcome over an interval of U defined by the propen-

sity scores P (z) and P (z′). The equation evaluates a causal effect that depends on the values

of the instrument. These effects are called Local Average Treatment Effects (LATE) by

Imbens and Angrist (1994). LATE-type effects differ from causal effects such as ATE or TT,

which do not depend on the IV values.35

A consequence of (23) is that ATE can be identified if there are two instrumental variable

values z0, z1 such that z0 induces full treatment nonparticipation (P (z0) = 0), and z1 induces

full treatment participation (P (z1) = 1):

Ee(Y | Z = z1)− Ee(Y | Z = z0) = Efix

(
Y (1)− Y (0) | 0 ≤ U ≤ 1

)
= Eh(Y | T̃ = 1)− Eh(Y | T̃ = 0) = ATE.

This setup is equivalent to a randomized control trial with full compliance. Mogstad and

Torgovitsky (2018) use functional form assumptions to extrapolate estimates over intervals

of U to point estimates.

Another approach for controlling for V exploits the discrete nature of the instrument to

generate an alternative balancing score. Let instrument Z take values in the discrete set

supp(Z) = {z1, . . . , zN} such that P (z1) < · · · < P (zN).
36 Let T (z) = 1[ζ(z) ≥ ϕ(V )] be

the counterfactual choice that would occur if Z were fixed at value z ∈ {z1, . . . , zN}. The

response vector S = [T (z1), . . . , T (zN)]
′ is the random vector of potential choices across all

Z-values.

35Heckman et al. (2008) develop the relationship between LIV and LATE in depth.
36The increasing ordering of propensity scores is assumed without loss of generality.
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Response vector S shares the same causal relationships of unobserved variable U in

Table 5. By this we mean that S is a function of V and that the choice T can be written as

function of Z and S:

T =
[
1[Z = z1], . . . ,1[Z = zN ]

]
· S.

Similar to U, the response vector S is a balancing score for V . The independence relation-

ship Y ⊥⊥ T | (T̃ ,S) holds, which implies that Ph(Y | T̃ = t,S) = Pe(Y | T = t,S).

Heckman and Pinto (2018) show that the response vector S controls for V by generating a

special partition of its support that spans the support of V and renders choice T statistically

independent of V within each cell of the partition. Each column of S is a list of responses

to different treatments for a person of a given V .

The values of S are called response-types or strata.37 The separability assumption elimi-

nates some of potential response-types. An influential example is due to Imbens and Angrist

(1994), who investigate the case of a binary instrument and a binary treatment. There are

four possible response-types termed always-takers, compliers, never-takers and defiers. They

invoke a monotonicity condition that is equivalent to the separability assumption Vytlacil

(2002). The assumption eliminates the defiers and enables the identification of treatment

effects for the compliers. See Heckman and Pinto (2018) and Buchinsky and Pinto (2021)

for general results on identification.

4.3 The Matching Assumption

A popular method for identifying treatment effects assumes that a set of observed pre-

treatment variables suffice to control for the confounding variable V . Otherwise stated, it

assumes that the observed variable X is a balancing score for the confounding variable V .

This assumption is called Matching.38 Another (structural) way to state this is that X spans

the space of V .

37The concept was developed by Robins (1986) and embellished in Frangakis and Rubin (2002).
38Heckman et al. (1998) investigate several estimation methods that invoke the matching assumption.
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Table 6 presents the empirical and the hypothetical models that justify the matching

assumption. The LMC of T in the hypothetical model implies that Y ⊥⊥ T | (T̃ , X).

According to (17), we have that Ph(Y | T̃ = t,X) = Pfix(Y (t) | X) = Pe(Y | T = t,X)

which means that the counterfactual outcome is identified by conditioning on X. Matching

variablesX are assumed not to be descendants of the hypothetical variable T̃ . Thus, Ph(X) =

Pe(X) and the probability distribution of the counterfactual outcome is given by Pfix(Y (t)) =∫
(Pe(Y | T = t,X = x)dFe,X(x).

The average causal effect of a binary treatment T ∈ {0, 1} is evaluated by the weighted

average of mean difference between the treated and not-treated participants that match on

X, namely, ATE =
∫ (

Ee(Y | T = 1, X = x)− Ee(Y | T = 0, X = x)
)
dFe,X(x).

39

Table 6: Matching Model: Empirical and Hypothetical Causal Models

Empirical Model Hypothetical Model

VX

T Y

VX

T Y T̃

The matching assumption replaces the unobserved variable U of the Generalized Roy

model in Table 5 by the observed variable X. In practice, it assumes that potential bias gen-

erated by confounding variables can be ignored when controlling for observed pre-treatment

variables. Under matching, the identification of treatment effects does not require an instru-

mental variable nor additional assumptions such as separability. This assumption enables

us to solve the problem of selection bias induced by unobserved variables V by conditioning

on the observed variables X.

39Heckman et al. (1998) incorporated additive separability between observable and unobservable variables
as well as exogeneity conditions that isolate outcomes and treatment participation into the matching frame-
work. Additionally, they compare various types of estimation methods to show that kernel-based matching
and propensity score matching have similar treatment of the variance of the resulting estimator.
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The matching assumption is justified in the case of randomized controlled trials (RCTs).

In this case, the matching variables X denote the pre-treatment variables conditioned on

in the randomization protocol. In observational studies, the matching assumption is often

rather strong. It assumes that the analyst observes enough information to make all the

agent’s unobserved variables irrelevant (see Heckman, 2008b). Otherwise stated, matching

assumes a symmetry in information between the economic agent and the econometrician.

There are several identification approaches that acknowledge the possibility of informa-

tion asymmetries between the agent being studied and the econometrician: control function

approaches, replacement functions or proxy variables. These methods often differ consider-

ably in terms of assumptions and methodology. However, they all share the same identifica-

tion principle: they use observed data to evaluate a proxy variable that plays the role of a

matching variable.

4.4 Matching on Proxied Unobservables

Matching on proxied unobservables is a version of matching that uses observed data to control

for the confounding effects of V . Consider the modification of the Generalized Roy model

in Table 7. The unobserved variable Q is a balancing score for the unobserved confounder

V . The matching conditions of hypothetical model, Y ⊥⊥ T | (T̃ , Q), and its respective

counterpart in the empirical model, Y (t) ⊥⊥ T | Q, hold. Variable Q has two additional

properties: (1) it may cause outcome Y ; and (2) it may be measured with error by the

observed variable M .

A common setup where Q arises is in the evaluation of college returns where T denotes

college graduation, Y denotes earnings, and Q denotes unobserved abilities such as cognition

or conscientiousness. These abilities are not directly observed but measured with error by

an observed vector of variables M , such as psychological surveys or test scores. Formally,

we write M = fM(Q, ϵM). The identification strategy is to exploit the structural function

36



M = fM(Q, ϵM) to evaluate Q, which, in turn, allows us to control for V and identify causal

effects.

Matching on proxied unobservables has long been used in the economics of education

(see, e.g., the essays in Goldberger and Duncan, 1973 and Goldberger, 1972). The method

is called the latent variable approach by Heckman and Robb (1985a). This literature offers

several possibilities for estimating Q (Aakvik et al., 1999, 2005; Carneiro et al., 2003; Cunha

et al., 2005). Olley and Pakes (1996) is an application of this method. A common parametric

approach extracts factors from psychological measurements to extract Q as a latent factor.

Nonparametric factor analysis is developed in Cunha et al. (2010) and Schennach (2020). It

is also possible to condition nonparametrically on Q without knowing the functional form of

fM .

Table 7: Matching on Proxied Unobservables: Empirical and Hypothetical Causal Models

Empirical Model Hypothetical Model

VQM

T Y

VQM

T Y T̃

4.5 Control Functions

The control function principle specifies the dependence of the relationship between observ-

ables and unobservables in a nontrivial fashion. The principle was introduced in Heckman

and Robb (1985a,b) building on earlier work by Telser (1964) and later popularized by Blun-

dell and Powell (2003). It was also applied in Carneiro et al. (2003) and Cunha et al. (2005).

Heckman’s sample selection correction (1979) is a control function.

We illustrate the control function principle using a version of the Generalized Roy model

where V is a scalar random variable and the binary choice T is given by the separable equation

T = 1[µ(Z) ≥ V ]. Let J = fJ(T, V, ϵJ) represents unobserved skills caused by the treatment
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T and the unobserved confounding variable V . In addition, let the outcome equation be

additive in K, that is to say that the outcome Y can be written as Y = fY (T, ϵY ) + ψ(J),

The model is displayed as a DAG in Table 8. The LMC of Y in the hypothetical model

implies that Y ⊥⊥ T | (T̃ , K). This means that K is a matching variable. The control

function approach seeks to control for variable V by estimating the function ψ(J) of the

outcome equation.

Heckman and Vytlacil (2007a,b) use the assumption of separability of observables and

unobservables in the choice equation and the outcome assumption of additivity to evaluate

ψ(J) as a function of the propensity score P (Z). Similar to the LIV Model, we can use

the CDF transformation to write the choice equation as T = 1[P (Z) ≥ FV (V )], where

FV (V ) ∼ unif([0, 1]). Note that the expected value of the outcome conditional on T = 1

gives the conditional counterfactual mean:

Ee(Y | Z, T = 1) = Efixh
(
Y (1) | Z, T = 1

)
= Eh(Y | T̃ = 1, Z, T = 1),

where the first term is observed, the second term uses fixing and the last one uses the

hypothetical model. Under separability and outcome additivity, we can express Eh(Y (1) |

T̃ = 1, Z, T = 1) as:

Eh

(
Y | T̃ = 1, Z = z, T = 1

)
= Eh

(
fY (T̃ , ϵY ) | T̃ = 1

)
+ Eh

(
ψ(J) | T̃ = 1, Z = z, T = 1

)
,

= Eh

(
fY (1, ϵY )

)
+ Eh

(
ψ
(
fK(1, V, ϵK)

)
| Z = z, T = 1

)
,(

setting Eh(fY (1, ϵY )) = α1

)
= α1 + Eh

(
ψ
(
fK(1, V, ϵK)

)
| P (z) > FV (V )

)
,

= α1 + Ee

(
ψ
(
fK(1, V, ϵK)

)
| P (z) > FV (V )

)
.

∴ Eh

(
Y | T̃ = 1, Z, T = 1

)
= α1 + f1(P (Z))︸ ︷︷ ︸

control function

, where f1
(
P (Z)

)
= Eh

(
ψ
(
fK(1, V, ϵJ)

)
| Z, T = 1

)
.

where the first equality uses the additivity assumption, the second uses the fact the T̃ is

an external variable, the third uses the separability assumption, the fourth switches the
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hypothetical model into the empirical model as V , ϵK , Z are non-descendants of T̃ . The last

equation gives the expectation Eh(Y | T̃ = 1, Z, T = 1) as a function of the propensity score

P (Z). Control function f1(P (Z)) can be estimated from observed data and the expected

value of the counterfactual outcome can be evaluated as

Eh(Y (1)) =

∫ 1

0

α1 + f1(p)dFP (Z)(p).

Table 8: Control Function: Empirical and Hypothetical Causal Models

Empirical Model Hypothetical Model

V

TZ

K

Y

V

TZ

K

Y T̃

4.6 Panel data Analysis and Other Approaches

A commonly used panel data method is difference-in-differences as discussed in Heckman

and Robb (1985a), Blundell et al. (1998), Heckman et al. (1999), and Bertrand et al. (2004).

All of the estimators previously discussed can be adapted to a panel data setting. Heckman

et al. (1998) introduce difference-in-differences matching estimators to eliminate the bias in

estimating treatment effects. Abadie (2005) extends this work. Separability between errors

and observables is a common feature of the panel data approach in its standard application.

Altonji and Matzkin (2005) and (Matzkin, 1993) present analyses of nonseparable panel

data methods. Regression discontinuity estimators, which are versions of IV estimators, are

discussed by Heckman and Vytlacil (2007b).

Table 9 summarizes some of the main identification approaches for the Generalized Roy

model discussed here. The table barely scratches the surface, but gives a sense of the broad

menu in the econometric approach. The essays in the Handbooks of Econometrics (Heckman

and Leamer, 2001, 2007) give a range of other estimation approaches.

39



T
ab

le
9:

S
om

e
A
lt
er
n
at
iv
e
A
p
p
ro
ac
h
es

th
at

Id
en
ti
fy

T
re
at
m
en
t
E
ff
ec
ts

b
y
C
on

tr
ol
li
n
g
fo
r
V

Y
⊥⊥

T
|(
T̃
,X

,V
),

T
∈
{0
,1
}

E
h
(Y

|T̃
=

t,
X

=
x
)
=

∫ E
e
(Y

|T
=

t,
X

=
x
,V

=
v
)d
F
e,
V
|X

=
x
(v
)

M
et
h
o
d
A
ss
u
m
es

N
ee
d
In
st
ru
m
en
t
(Z

)?
Id
en
ti
fy

D
is
tr
ib
u
ti
on

of
V
?

M
at
ch
in
g
a

V
,
X

k
n
ow

n
N
o

Y
es

(V
ob

se
rv
ed

)

C
on

tr
o
l

F
u
n
ct
io
n
sb

V
es
ti
m
at
ed

,
X
,
Z

k
n
ow

n
(c
on

ti
n
-

u
o
u
s
T
);
B
o
u
n
d
s
on

q
u
an

ti
le
s
of

V
es
ti
m
a
te
d
(d
is
cr
et
e
ca
se
)

Y
es

(e
x
ce
p
t
ca
se
s
w
h
er
e

fu
n
ct
io
n
al

fo
rm

s
se
cu

re
id
en
ti
fi
ca
ti
on

)
Y
es

(o
ve
r
su
p
p
or
t)

F
a
ct
or

M
et
h
o
d
c

D
is
tr
ib
u
ti
on

of
V

es
ti
m
at
ed

fr
om

a
d
d
it
io
n
al

m
ea
su
re
m
en
ts

of
V

(M
)

N
o

Y
es

(w
it
h

au
x
il
ia
ry

m
ea
su
re
m
en
ts

ov
er

su
p
p
or
t)

IV
:
L
A
T
E
,
L
IV

d
Z
,X

k
n
ow

n
Y
es

E
st
im

at
e

in
te
rv
al
s

of
q
u
an

ti
le
s

of
V

(H
ec
k
m
an

an
d
V
y
tl
ac
il
,
19

99
,
20

05
)
an

d
co
n
d
it
io
n
s
on

th
em

;
L
IV

sh
ri
n
k
s
in
te
rv
al

of
q
u
an

ti
le
s
of

V
to

a
p
oi
n
t
u
si
n
g
co
n
ti
n
-

u
ou

s
in
st
ru
m
en
ts

an
d
co
n
d
it
io
n
s
on

th
em

S
tr
at
ifi
ca
ti
on

e
Z
,X

k
n
ow

n
In
st
ru
m
en
ts

gi
v
e

re
st
ri
ct
io
n
s
on

st
ra
ta

(b
al
an

ci
n
g
sc
or
es

fo
r
V
)

Id
en
ti
fy

d
is
tr
ib
u
ti
on

of
st
ra
ta

w
h
ic
h

p
la
ce
s
in
te
rv
al

b
ou

n
d
s
on

V
an

d
co
n
d
i-

ti
on

s
on

th
em

L
o
n
gi
tu
d
in
a
l

D
at
a
M
et
h
o
d
sf

V
a
ri
et
y
o
f
a
ss
u
m
p
ti
on

s
C
ov
ar
ia
n
ce

re
st
ri
ct
io
n
s

Y
es
;
in

lo
n
g
p
an

el
s
ca
n
id
en
ti
fy

V

M
ix
in
g

D
is
tr
ib
u
ti
o
n
sg

V
⊥⊥

X
N
o
(i
n
te
rv
al
s
of

V
)

Y
es

(M
ix
tu
re
s)

a
H
ec
k
m
an

et
al
.
(1
99

8
);

R
os
en
b
a
u
m

a
n
d
R
u
b
in

(1
98

3)
;
b
B
lu
n
d
el
l
an

d
P
ow

el
l
(2
00

3)
;
H
ec
k
m
an

an
d
R
ob

b
(1
98

5a
,b
);

d
S
ee

re
v
ie
w

in
H
ec
k
m
an

an
d
V
y
tl
a
ci
l
(2
00

7
a
);

e
F
ra
n
ga

k
is

an
d
R
u
b
in

(2
00

2)
;
H
ec
k
m
an

an
d
P
in
to

(2
01

8)
;
f
A
b
b
ri
n
g
an

d
H
ec
k
m
an

(2
00

7)
;
H
ec
k
m
an

a
n
d
R
o
b
b
(1
9
8
5a

);
g
C
am

er
o
n
an

d
H
ec
k
m
an

(1
99

8)
;
H
ec
k
m
an

an
d
S
in
ge
r
(1
98

4)
;
P
ra
ka
sa

R
ao

(1
99

2)

40



5 The Neyman-Rubin (NR) Causal Model

The Neyman-Rubin causal approach uses the language and framework of experimental design

developed by Neyman (1923), Fisher (1935), and Cox (1958) and popularized by Holland

(1986). It ignores essential aspects of the econometric approach to causality and conflates

distinct concepts (e.g., SUTVA).40 It does not define hypothetical models nor does it employ

structural equations to characterize causal models. It focuses on units of analysis instead of

system of equations.

In this approach, causal models are characterized by statistical independence relation-

ships among counterfactual counterparts of observed variables, never precisely justified. In

place of the thought experiments that characterize the econometric approach, it uses random-

ized controlled experiments as the foundational paradigm. The contrast between thought

experiments and randomized control experiments is central to understanding the differences

in the approaches.

The NR approach lacks the clarity of interpretation offered by causal models described

by structural equations. It is often difficult to map the independence relationships of a NR

model into the causal relationships produced by economic theory. In particular, NR makes it

difficult to use economic theory to assess the credibility of assumptions about the underlying

structural equations that ensure the identification of causal effects or to interpret economic

data using economic models.

Another drawback is that the NR framework lacks the fundamental tools of econometric

causal analysis. It does not explicitly model unobserved variables in structural models. This

feature substantially limits the use of standard econometric tools. It rules out (or makes

cumbersome) several fruitful econometric strategies such as balancing bias within models

using compensating variations of arguments of structural functions to keep agents at the

40Heckman (2008a) explains that: SUTVA - Stable Unit Treatment Value Assumption - conflates two two
distinct concepts regarding functional autonomy (structural invariance) and no interactions among agents.
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same levels of well being,41 and cross-equation restrictions on both observable and unobserv-

able model components,42 or functional form restrictions. In practice, the set of tractable

identification strategies that employ the NR framework is limited to a few possibilities: ran-

domized trials, matching, IV and its many surrogates and differences-in-differences.43 This

section illustrates the drawbacks of NR in analyzing core policy questions or in synthesizing

and interpreting evidence.

5.1 The Generalized Roy Model under NR

The NR framework focuses on the unit of analysis i ∈ I which usually represents an economic

agent or entity. The framework describes part of the Generalized Roy model of Table 3 using

two counterfactuals: Ti(z) is the potential treatment when the instrument Z is externally set

to value z ∈ supp(Z); and Yi(t, z) is the potential outcome of agent i when Z is set to value

z ∈ supp(Z) and choice T is set to t ∈ supp(T ). Properly formulated, potential outcomes

are the outputs of structural equations. NR does not explicitly characterize the treatment

choice equation. It prides itself on being nonparametric, although some proponents claim

that assuming linearity is an innocuous assumption, even when models are fundamentally

nonlinear.44

The NR framework characterises the Generalized Roy model (4)–(7) by three assump-

tions:

1. An exclusion restriction states that Yi(t, z) = Yi(t, z
′), for all

z, z′ ∈ supp(Z), t ∈ supp(T ) and all i ∈ I.

2. IV relevance: Z is not statistically independent of T, that is Z ⧸⊥⊥ T.

3. Exogeneity condition: Z ⊥⊥ (Y (t), T (z)) for all (z, t) ∈ supp(Z)× supp(T ).

41See e.g., Ekeland et al. (2004); Rosen (1986).
42See, e.g., Hansen and Sargent (1982).
43See Imbens and Rubin, 2015.
44Angrist and Pischke (2009). Ekeland et al. (2004) show that nonlinearity is intrinsic to hedonic models

and that linearizing it produces identification problems.
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The exclusion restriction means that Z does not directly cause Y . Thus, we can express

the counterfactual outcome as Yi(t) instead of Yi(t, z). IV relevance means that T is caused

by Z. The exogeneity condition of the NR framework can be traced back to the independence

relationship between Z and V of the Generalized Roy model (4)–(7). In the NR framework,

the exogeneity condition is an assumption. In the Generalized Roy model, the exogeneity

condition is a consequence of the causal relation among model variables. Namely, that the

Z and V are external variables. LMC (8) implies that Z ⊥⊥ V, which, in turn, generates the

exogeneity condition.

The identification of counterfactual outcomes requires additional assumptions. A popular

assumption securing identification is the monotonicity condition (24) of Imbens and Angrist

(1994). It states that a change in an instrument induces agents to change their treatment

choice in the same direction. Notationally, for any z, z′ ∈ supp(Z), it says that:

Ti(z) ≥ Ti(z
′) ∀i ∈ I or Ti(z) ≤ Ti(z

′) ∀i ∈ I. (24)

Vytlacil (2002) shows that the monotonicity condition (24) is equivalent to the sepa-

rability assumption T = 1[ζ(Z) ≥ ϕ(V )]. Otherwise stated, the NR counterpart for the

Generalized Roy model separability assumption is the monotonicity condition. Each condi-

tion enables the identification of causal effects of T on Y in its respective framework. At

this level, the IV models in the two frameworks are equivalent.

Model equivalence does not, however, imply that they offer the same analytical capac-

ities. In particular, the Generalized Roy model (4)–(7) explicitly displays the unobserved

confounding variable V, while NR does not. This feature enables analysts to further inves-

tigate the model and use other approaches for controlling for it. Section 4 shows that the

identification of counterfactual outcomes hinges on the analysts’s ability to control for the

unobserved confounding variable V. Heckman and Vytlacil (2005) use the fact that U is a

balancing score for V to define and identify a new parameter called the marginal treatment
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Table 10: Some Causal Parameters as Weighted Average the MTE

Causal Parameters MTE Representation Weights

ATE = Eh(Y (1)− Y (0)) =

∫ 1

0

MTE(p)WATE(p)dp WATE(p) = 1

TT = Eh(Y (1)− Y (0) | T = 1) =

∫ 1

0

MTE(p)WTT (p)dp WTT (p) =
1− Fe,P (p)

1∫
0

(
1− Fe,P (t)

)
dt

TUT = Eh(Y (1)− Y (0) | T = t0) =

∫ 1

0

∆MTE(p)WTUT (p)dp WTUT (p) =
Fe,P (p)

1∫
0

(
1− Fe,P (t)

)
dt

TSLS =
Cov(Y,Z)

Cov(T,Z)
=

1∫
0

MTE(p)WTSLS(p)dp WTSLS(p) =

1∫
p

(
t− Ee(P )

)
dFe,P (t)

1∫
0

(
t− Ee,P (t)

)2
dFe,P (t)

LATE =
Ee(Y | Z = z1)− Ee(Y | Z = z0)

Pe(z1)− Pe(z0)
=

P (z1)∫
P (z0)

MTE(p)WLATE(p)dp WLATE(p) =
1

Pe(z1)− Pe(z0)

Source: Heckman and Vytlacil (2005).

effect (MTE):

MTE(u) = Eh

(
Y | T̃ = 1, U = u

)
− Eh

(
Y | T̃ = 0, U = u

)
= Efix

(
Y (1)− Y (0) | U = u

)
.

The MTE plays a primary role in generating a range of causal effects commonly sought in

policy evaluations. A few of these causal parameters are presented in Table 10.

The analytical gain generated by switching from the NR framework to a structural equa-

tion framework is substantial. The use of structural equations facilitates a richer analysis

and a deeper investigation of the properties of the Generalized Roy model. Such analyses

cannot be achieved in the NR framework because it does not include unobserved variables,

nor does it employ structural equations. This analytical deficiency of the NR framework

limits the researcher’s ability to extend causal analysis of the Generalized Roy model and

other economic models.

The parsimonious machinery of the NR framework is often misunderstood as endowing

the Generalized Roy model with a greater level of generality. This impression is mislead-

ing as the IV model featured in the NR framework is equivalent to the Generalized Roy
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model described by equations (4)–(7) and its monotonicity criteria is equivalent to a sepa-

rability condition. Its apparent simplicity is due to its lack of explicit statements about its

assumptions.

5.2 The Matching Model in NR

A common identification approach in NR is a matching assumption on observed variables.

It states that the treatment choice T is independent of counterfactual outcomes Y (t) when

conditioning on observed pre-treatment variables X, that is, Y (t) ⊥⊥ T | X.45 Intuitively,

the assumption states that pre-treatment variables X are sufficiently rich to account for all

the unobserved variables that jointly influence treatment choice T and outcome Y . The as-

sumption can be easily criticized as often being overly optimistic for the case of observational

studies (Heckman, 2008b; Heckman and Navarro, 2004).

It is natural to assume that increasing the number of variables on which matching is

based decreases the bias generated by unobserved confounders. This statement is known to

be false.46 However it is rather difficult to investigate the truth of this claim using the NR

framework. The causal model of Table 11 clarifies this point.

Table 11: Hypothetical Matching Model

Causal Model DAG Independence Relationships

V = fV (ϵV )

V

T

W X

K U

Y

J

J = fJ(ϵJ)
W = fW (ϵW )
V = fV (ϵV ) Y (t) ⊥⊥ T | R
T = fT (V,W, ϵT ) Y (t) ⧸⊥⊥ T | X
R = fR(T, V, ϵR) Y (t) ⧸⊥⊥ T | (X,R)
U = fU (K, ϵU )
X = fK(W,J, ϵX)
Y = fY (T,K,U, J, ϵY )

45In the language of Pearl (2009b), X d-separates Y and T .
46See, for instance, Greenland et al. (1999); Heckman and Navarro (2004); Pearl (2009c).
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The causal model Table 11 consists of four observed variables: the treatment T , the

outcome Y , a pre-treatment variable X and a post-treatment variable R. The model also

contains four unobserved variables V , U ,W , J . The causal relationships among the observed

and unobserved variables renders Y (t) ⊥⊥ T | R even though Y (t) ⧸⊥⊥ T | X. The indepen-

dence relationship that characterises the matching assumption holds for post-treatment vari-

ables, but not for the pre-treatment variable. Moreover, adding the pre-program variable X

to the conditioning set of Y (t) ⊥⊥ T | K prevents identification because Y (t) ⧸⊥⊥ T | (X,K).

The causal model of Table 11 exemplifies the difficulty of performing causal investigations

within the NR framework. The unusual properties of the model stem from the particular

causal relationships among its observed and unobserved variables. This model is not easily

analyzed within the NR framework which it lacks unobserved variables and suppresses the

structural equations that clearly describe the causal relationships among variables.

5.3 Mediation Models under NR: An example

Mediation models originate in the literature on path analysis and simultaneous equations.47

They trace the impacts of interventions on outcomes through their multiple channels of

operation. Identifying the causal models generated by NR assumptions is often a daunting

task. The economic content of these assumptions is often far from clear. We examine several

mediation models to illustrate this point and show the power of the econometric approach

compared to an approach based on NR principles. Table 12 uses the econometric approach

to present a general mediation model in which a treatment T causes a mediator M and an

outcome Y that is caused by both T and M . V denotes a random vector that plays the role

of the unobserved confounder causing T , M and Y . The counterfactual mediator when the

treatment if fixed at t ∈ supp(T ) is M(t) = fM(t,V , ϵM). The counterfactual outcome when

the treatment is fixed at t and the mediator is fixed atm ∈ {0, 1} is Y (t,m) = fY (t,m,V , ϵY ).

The counterfactual outcome when we fix only T at t is Y (t) = fY (t,M(t),V , ϵY ).

47See Bollen (1989); Klein and Goldberger (1955); Wright (1921, 1934).

46



Table 12: Mediation Model with Confounding Variable

Causal Model DAG
V = fV (ϵV ) V

MT Y

T = fT (V , ϵT )
M = fM(T,V , ϵM)
Y = fY (T,M,V , ϵY )

The goal of mediation models is to decompose the total effect of T on Y into an indirect

effect that includes the effect of T onM andM on Y and a direct effect not mediated byM .

To facilitate the discussion, let T andM denote binary variables taking values in {0, 1}. The

average (total) effect of T on Y is Efix(Y (1)−Y (0)). 48 We can also define the average direct

effect of T on Y as Efix(Y (1,M)−Y (0,M)) =
∑1

m=0Efix(Y (1,m)−Y (0,m))Pe(M = m) and

the average indirect effect as Efix(Y (T, 0)− Y (T, 1)) =
∑1

t=0Efix(Y (t, 1)− Y (t, 0))Pe(T =

t).49 Table 13 displays three hypothetical models suitable for examining the total, direct and

indirect effects. The first DAG corresponds to the total effect. The hypothetical variable

T̃ replaces the T -input of both the mediator M and the outcome Y equations. The second

DAG corresponds to the indirect effect only and the hypothetical variable replaces only the

T -input of the mediator equation. The last DAG corresponds to the direct effect only where

the hypothetical variable T̃ replaces only the T -input of outcome equation.

48This is the same as Eh(Y (1)− Y (0)).
49Alternatively, we can then define the direct effect and indirect effects for a given t by (25) and (26)

respectively.

DE(t) = Efix

(
Y (1,M(t))− Y (0,M(t))

)
=

∫
Efix

(
Y (1,m)− Y (0,m)

)
dFM(t)(m) (25)

IE(t) = Efix

(
Y (t,M(0))− Y (0,M(1))

)
=

∫
Efix(Y (t,m))dFM(1)(m)−

∫
Efix(Y (t,m))dFM(0)(m).

(26)
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Table 13: Hypothetical Models for the Mediation Model: Total, Direct and Indirect
Effects

Total Effect Indirect Effect Direct Effect

V

MT Y

T̃ V

MT Y

T̃ V

MT Y

T̃

The presence of confounding variable V prevents the identification of the counterfactual

means Efix(M(t)) and Efix(Y (t,m)). A solution to this identification problem using NR is

the Sequential Ignorability (SI):50(
Y (t′,m),M(t)

)
⊥⊥ T, (27)

Y (t′,m) ⊥⊥M(t) | T, (28)

for any t, t′ ∈ supp(T ) and m ∈ supp(M). SI (27)–(28) enables analysts to identify counter-

factual means by statistical conditioning Ee(M(t)) = Efix(M | T = t) and Efix(Y (t,m)) =

Ee(Y | T = t,M = m).

SI assumptions (27)–(28) can be understood as an application of the matching condition

to mediation models. Assumption (27) states that the choice T is exogenous with respect

to the outcome and mediator counterfactuals. The assumption would be justified if T were

randomly assigned by a RCT experiment.

The interpretation of assumption (28) is less straightforward. It states that the coun-

terfactual mediator M(t) is independent of the counterfactual outcome Y (t,m) when condi-

tioned on T . The assumption cannot be directly tested even in randomized experiments that

randomize T (Imai et al., 2010). SI assumptions (27)–(28) are much more easily interpreted

using structural equations. The assumptions rule out any confounding variable V, generating

the model in Table 14.

50See Imai et al. (2011, 2010) for the properties of these assumptions. Levin and Robbins (1983) uses such
assumptions in his g-computation algorithm.

48



Table 14: Mediation Model with No Confounding Variables

Causal Model DAG
T = fT (ϵT ) MT Y
M = fM(T, ϵM)
Y = fY (T,M, ϵY )

In light of a structural analysis, it can be seen that SI assumptions (27)–(28) are rather

strong. They can be weakened if instrumental variables are available as depicted in Table 15.

We use the model to exemplify a case in which NR assumptions are logically possible but gen-

erate a causal model that is difficult to justify using any plausible economic argument. The

structural model enables the analyst to interpret the statistical assumptions using behavioral

theory.

Table 15: Mediation Model with Instrumental Variables

Causal Model DAG
V = fV (ϵV ) V

MT YZ

Z = fZ(ϵZ)
T = fT (Z,V , ϵT )
M = fM(T,V , ϵM)
Y = fY (T,M,V , ϵY )

The mediation model with IV has four counterfactuals, T (z), M(t), Y (t), Y (t,m) previ-

ously defined. In the language of NR, the model would be characterized by IV exogeneity

condition Z ⊥⊥ (T (z),M(t), Y (t), Y (t,m)). The condition holds due to the independence of

Z and V .51. Suppressing Y generates an IV model where M plays the role of the outcome.

To dig more deeply, we investigate the case of a binary instrument Z ∈ {0, 1}. The

response vector Si = [Ti(0), Ti(1)]
′ denotes the vector of treatment choices that agent i

would take if it were assigned to each of the instrumental values. Section 4 shows that, given

S, the treatment choice T depends only on the instrument Z. The exogeneity condition

51Note that if we were to suppress M from the DAG of Table 15, we would obtain the empirical model of
Table 4.
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states that Z is independent of the counterfactual outcome Y (t). Thus

T ⊥⊥ Y (t) | S. (29)

S is a balancing score for V .

Yamamoto (2014) uses the language of NR to identify mediation effects using instrumen-

tal variables. His solution merges SI (27)-(28) with the matching property of the response

vector S in (29). He advocates an assumption that he terms the local average causal medi-

ation effects (LACME) assumption:

(Y (t,m),M(t′)) ⊥⊥ T | (S = [0, 1]′), (30)

Y (t,m) ⊥⊥M(t′) | (T,S = [0, 1]′). (31)

LACME (30)–(31) adds the the response vector S as an additional conditioning variable

to the SI independence relationships in (27)-(28). Assumption (30) is a simple extension

of the matching property of S from the IV model of Table 14 to the mediator model of

Table 15. Under monotonicity (24), the LACME assumption identifies the direct and indirect

mediation effects for compliers.

It is easy to interpret LACME in terms of NR assumptions: assumptions(30)–(31) are a

weaker version of SI (27)-(28) that incorporates the LATE analysis of Imbens and Angrist

(1994). On the other hand, it is difficult to gauge how the LACME assumptions fit into

the mediation model of Table 12. It is even harder to interpret the causal content of these

assumptions.

Table 16 presents two DAGs that use the structural approach to clarify the causal content

of LACME. The first DAG places the unobserved response vector S into the mediation model

of Table 12. The response vector S plays the role of a balancing score for V only for choice

T .52 The addition of the response vector does not result in any loss of generality. The

second DAG displays the mediation model under LACME. According to assumption (31),

the response vector S plays the role of a balancing score for T and M . In addition, LACME

52This property is based on the discreteness of the instrument.
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prevents V from jointly causing M , Y and implies that S directly causes M , Y . It is hard

to translate LACME into credible economic causal relationships.

S = [T (0), T (1)]′ is expressed as a function of the confounding variable V because T (z)

is a function of V . Note that the choice T is expressed as a function of S and Z because

T =
[
1[Z = 0],1[Z = 1]

]
S. The response vector S = [T (0), T (1)]′ is expressed as a function

of the confounding variable V because T (z) is a function of V . The resulting DAG does not

include more information than the original model of Table 12 because S is unobserved.

The second DAG displays the mediation model under LACME. From assumption (31),

the response vector S plays the role of a matching variable for the causal effect of M on Y .

It plays the role of a balancing score for V for T,M, and Y . This assumption prevents V

from jointly causing M,Y and implies that S directly causes M , Y . It is hard to produce

interpretable economic models that justify S as a cause of M or Y . LACME is an unmoti-

vated statistical assumption devoid of economic content typical of analyses within the NR

framework.

Table 16: Mediation Model including S and the Mediation Model under LACME As-
sumption

General DAG with IV DAG under LACME

VS

MTZ Y

VS

MTZ Y

Using Structural Equations to Identify the Mediation Model with IV

Dippel, Gold, Heblich, and Pinto (2020) study the identification of causal effects for the

mediation model with an instrumental variable. Their analysis illustrates the gain in clarity
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and interpretability when a causal model is expressed by structural equations instead of NR

statistical independence relationships.

A typical empirical setting of an IV model consist of one instrument and various out-

comes. A mediation model with an instrument arises when treatment causes an intermediate

outcome (the mediator), which in turn causes a final outcome. The DAG of this empirical

model is presented in the first column of Table 17.

The second column of Table 17 presents the DAG generated by suppressing the final

outcome. The resulting DAG is an IV model like that examined in Section 3. The causal

effect of T on M can be identified by the methods discussed in Section 4. The third column

of Table 17 suppresses the mediator M. The resulting model is also an IV model. This

means that the total effect of T on Y can also be identified by the methods of Section 4.

Unfortunately, the IV does not identify the causal effect ofM on Y . Consequently, mediation

analysis cannot be conducted without further assumptions.

Table 17: Dissecting the Mediation Model

Original Model Suppressing the Outcome Suppressing the Mediator

V

MTZ Y

V

MTZ

V

T YZ

Dippel, Gold, Heblich, and Pinto (2020) address the question of whether it is possible to

use an instrumental variable Z to nonparametrically identify the causal chain connecting T ,

M , Y while maintaining the endogeneity of the treatment T with respect to the mediatorM

and outcome Y . They show that the only solution to this problem is to assume the partially

confounded mediation model of Table 18.
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Table 18: Partially Confounded Model with Instrumental Variables

Causal Model DAG
VT = fVT

(ϵVT
)

VT

TZ M Y

VYVY = fVY
(ϵVY

)
Z = fZ(ϵZ)
T = fT (Z,VT , ϵT )
M = fM(T,VT ,VY , ϵM)
Y = fY (T,M,VY , ϵY )

The partially confounded assumption is that VT ⊥⊥ VY . This is sometimes called a

components of variance model. The assumption generates an additional exogeneity condi-

tion (M(z), Y (m, t)) ⊥⊥ Z | (T = t) while maintaining the endogeneity of the treatment

T with respect to M and Y . This means that Z is a valid instrument for identifying the

causal effect of M on Y when conditioning on the treatment variable T . If the assumption

holds, the causal effect of M on T can be evaluated by the methods of Section 4. Dippel,

Gold, Heblich, and Pinto (2020) discuss the intuition, plausibility, and estimation of the par-

tially confounded mediation model. They illustrate a range of examples where the partially

confounding assumption may hold and where it does not.

6 The Do-Calculus and the Hypothetical Model

This section compares the do-calculus framework (DoC) of Pearl (2009b) with the Neyman-

Rubin (NR) framework of Holland (1986) and Imbens and Rubin (2015) as well as the

Hypothetical Model (HM) of Heckman and Pinto (2015).

The DoC was first presented in Pearl (1995). The method employs graph theory-based al-

gorithms to identify the probability distribution of counterfactual variables in causal models

represented by DAGs.53 In contrast with NR, DoC uses autonomous (invariant) structural

53For a recent book on the graphical approach to causality, see Peters et al. (2017). For related works on
causal discovery, see Glymour et al. (2014), Heckman and Pinto (2015), Hoyer et al. (2009), and Lopez-Paz
et al. (2017).

53



equations. The method clearly describes causal relationships among model variables. Its fun-

damental relationships are based on thought experiments. It is not incompletely formulated

in a way that leads to problematic causal interpretations as in the NR approach.

DoC applies to any nonparametric, recursive system of structural equations. Similar to

HM, DoC allows for unobserved variables. It can be applied to multiple equation causal

models and a range of causal inquiries.

However, HM and the DoC differ greatly regarding counterfactual manipulations. To

address the causal operation of fixing, the HM solution is based on a hypothetical model that

formalizes thought experiments and places them on a sound probabilistic footing. Contrary

to HM, DoC defines hypothetical models by making manipulations within the empirical

model. It does not have a counterpart to T̃ , the source of hypothetical variation in HM.

DoC implements the notion of setting or fixing using a new set of rules that combine graphical

analysis, independence relationships and probability equalities.

For instance, the DoC uses a DAG-based criteria called d-separation to check for condi-

tional independence among variables. Its definition requires some DAG terminology. Let U

be a path of arrows that connects variables T and Y in a DAG G regardless of the arrows’

directions. A collider C in path U is a variable that has two arrows pointing at it (inverted

fork). A variable V in the path U is said to block T and Y in the DAG G if it is not a

collider (nor a descendant of a collider). T and Y are said to be d-separated by a set of

variables V if V d-separates all paths from T to Y.

6.1 The Rules of DoC

As noted in Section 3.5, DoC uses the “back-door” criterion to verify matching conditions.

In DoC terminology, the matching condition Y (t) ⊥⊥ T |V of the Generalized Roy Model in

Table 3 is expressed by the statement: “V d-separates Y and T in the DAG GT ,” where G

be the original DAG of the Roy Model and GT is a derived DAG which suppresses the arrows
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departing from T. The “back-door” criterion holds for confounder V of the Roy Model. This

implies the matching condition in which controlling for V renders the counterfactual outcome

Y (t) statistically independent of treatment T.

The core machinery of the DoC consists of three DAG-based rules. Additional notation

is necessary to describe these rules. Let Y , K, Z, T denote disjoint variable sets in T . In

DoC notation, T (Z) denotes the variables in T that do not directly or indirectly cause Z.

“Do” deletes certain links in the original graph and assumes certain conditional independence

relations. This is Pearl’s way to fix variables externally. DoC uses GK̄ for the derived DAG

that deletes all causal arrows arriving at K in the original DAG G. GT denotes the DAG

that deletes all causal arrows emerging from T . In this notation, GK,T stands for the derived

DAG that suppresses all arrows arriving at K and emerging from T , while GK,T (X) deletes

all arrows arriving at K in addition to arrows arriving at T (X), variables in T that are not

ancestors ofX. The DoC rules combine a graphical condition and a conditional independence

relation that, when satisfied, imply a probability equality:

Table 19: The Three DoC Rules

Rule 1:
If Y ⊥⊥ T | (K,Z) holds in GK , then P (Y | do(K), T, Z) = P (Y | do(K), Z)

Rule 2:
If Y ⊥⊥ T | (K,Z) holds in GK,T , then P (Y |do(K), do(T ), Z) = P (Y | do(K), T, Z)

Rule 3:
If Y ⊥⊥ T | (K,Z) holds in GK,T (Z), then P (Y |do(K), do(T ), Z) = P (Y | do(K), Z)

The process of checking if a causal effect is identified requires iterative use of these rules.

We present several examples of how to use these rules below.

In computer science, DoC is said to be “complete.” This is different from the notion of

completeness as defined in simultaneous equations theory discussed below in Section 7. The

key DoC notion is that if a causal effect is identifiable, it can be identified by the iterative
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application of some sequence of the three rules (Huang and Valtorta, 2006; Shpitser and

Pearl, 2006).

A major limitation of do-calculus is that it only applies to non-parametric models that

can be fully characterized by a DAG. Stated otherwise, the method does not account for

assumptions about the functional forms of the structural equations or covariance restrictions.

This limitation hinders the application of most of the popular econometric tools used in em-

pirical economics such as cross equation restrictions, separability, additivity or monotonicity

assumptions. For instance, the Generalized Roy model is not identified by DoC because it

requires assumptions such as separability. The same is true of the IV model. Separability

cannot be characterized by conditional independence assumptions generated by a DAG. We

now demonstrate these points.

6.2 Using Do-Calculus to Investigate the Roy Model

We show the limitations of the DoC for identifying the Roy model.

Table 20: Using Do-Calculus to Investigate the Roy Model

Original DAG G Derived DAG GZ Derived DAG GT Derived DAG GT ,Z

V

YTZ

V

YTZ

V

YTZ

V

YTZ

The first column of Table 20 presents the DAG of the original Roy model, which is

denoted by G. The second column displays the DAG GZ which suppresses the arrow arising

from Z. The LMC of Z on DAG GZ is Z ⊥⊥ (Y, T ). From Rule 2 in DoC, we obtain

P (T | do(Z)) = P (T | Z). Summarizing:

GZ ⇒ T ⊥⊥ Z ⇒ by Rule 2 that P
(
T | do(Z)

)
= P (T | Z). (32)

Therefore, the modified Directed Acyclic Graph (DAG), GZ , enable us to assert that

conditioning T on Z = z is equivalent to choice T when we fix Z to value z. In the NR
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framework, this result is obtained by the exogeneity condition T (z) ⊥⊥ Z, which states that

the instrument Z is independent of the counterfactual choice T (z) and thus P (T |Z = z) =

P (T (z)) holds. Instrument Z in DAG GZ is independent of both T and Y . This analysis

also applies to Y. We can use (32) to obtain that P (Y | do(Z)) = P (Y | Z), which means

that conditioning on Z is equivalent to fixing Z. In summary, instrument Z is an external

variable and the causal operation of fixing is translated to standard statistical conditioning.

The third column of Table 20 displays the DAG GT which suppresses the arrow arriving

at T . The LMC of Z in GT implies Z ⊥⊥ Y . By Rule 1 of DoC, we have that P (Y |

do(T ), Z) = P (Y | do(T )). Summarizing:

GZ ⇒ Y ⊥⊥ Z ⇒ by Rule 1 that P (Y | do(T ), Z) = P
(
Y | do(T )

)
. (33)

This means that Z is statistically independent of Y when we fix T. This statement refers to

the exogeneity condition Y (t) ⊥⊥ Z or the independence relationship Y ⊥⊥ Z | T̃ of the HM

framework.

The last column of Table 20 displays the DAG GT ,Z which suppresses the arrow arriving

at T and arising from Z. Note that the DAGs GT ,Z and GT are the same. The LMC of Z is

Z ⊥⊥ (T, Y, V ) which implies that Z ⊥⊥| T holds. Using Rule 2 of the DoC we obtain:

GT ,Z ⇒ Y ⊥⊥ Z | T ⇒ by Rule 2 that P (Y | do(T ), do(Z)) = P (Y | do(T ), Z). (34)

Combining P (Y | do(T ), Z) = P (Y | do(T )) in (33) with P (Y | do(T ), do(Z)) = P (Y |

do(T ), Z) in (34) we obtain P (Y | do(T ), do(Z)) = P (Y | do(T )). This means that the

probability distribution of the outcome Y when we fix both Z, T is the same as the counter-

factual outcome generated by fixing only the choice T . In the NR framework, this property

refers to the exclusion restriction Yi(t, z) = Yi(t, z
′) for all z, z′ ∈ supp(Z).

These statements exhaust the analysis of the Roy model analysis that can be performed

using DoC. The method describes some key properties of the Roy model, but application

of its rules alone cannot deliver identification of treatment effects. Indeed, the assumptions

necessary for securing the identification of treatment effects in the Roy model cannot be
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assessed by a DAG representation. Identifying assumptions, such as separability or mono-

tonicity, impose restrictions on the functional form of the choice equation which go beyond

the causal links described by a DAG.

6.3 The Front-door Model

To make a more positive statement about do-calculus, it is useful to compare the identifica-

tion machinery of the DoC and HM using a causal model when treatment effects are identified

by DoC. We use the “Front-door model” of Pearl (2009b) to illustrate the differences in the

approaches.

The Front-door model consists of three observed variables T,M, Y and an unobserved

confounding variable V. Treatment T causes a mediator M which in turn causes outcome Y.

Table 21 presents the causal representations of the model.

Table 21: Representations of the Front-door Model

Variable Map Structural Eq. DAG LMC

V M(V ) = ∅ V = fZ(ϵV ) V

M YT

Z ⊥⊥ V |∅
T M(T ) = {V } T = fT (V, ϵT ) V ⊥⊥ ∅|∅
M M(M) = {T} M = fM (T, ϵM ) M ⊥⊥ V |T
Y M(Y ) = {M,V } Y = fY (M,V, ϵY ) Y ⊥⊥ ∅|(M,V )

The causal effect of T on Y in the Front-door model is identified. This result arises from

the fact that the causal effect of T on M is not directly confounded by V since conditioning

on T blocks the effect of the confounder V on M . Thus, we can identify the causal effect of

M on Y conditional on T . The causal effect of T on Y can be evaluated as the compound

effect of T on M and M on Y .
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Table 22: Using Do-Calculus to Identify the Causal Effect of T on Y in the Front-door
Model

Front-door Model G Derived DAG GT Derived DAG GM

V

M YT

V

M YT

V

M YT

Derived DAG GM Derived DAG GT ,M Derived DAG GT ,M

V

M YT

V

M YT

V

M YT

We illustrate how to use DoC to identify the distribution of the counterfactual outcome

Y (t). To simplify notation, suppose that all variables are discrete. The do-calculus is cum-

bersome. The method requires the five derived DAGs displayed in Table 22. Identification

for the counterfactual outcome is obtained by the following sequence of steps:

1. T ⊥⊥M in GT holds, thus by Rule 2 we have that P (M | do(T )) = P (M | T ).

2. M ⊥⊥ T in GM holds, thus by Rule 3 we have that P (T | do(M)) = P (T ).

3. M ⊥⊥ Y | T in GM holds, thus by Rule 2 we have that P (Y | T, do(M)) = P (Y | T,M).

4. Adding these results, we obtain:

∴ P (Y | do(M)) =
∑
t

P (Y | T = t, do(M))P (T = t | do(M))

by Law of Iterated Expectations (L.I.E.)

=
∑
t

P (Y | T = t,M)P (T = t) by steps 1,2, and 3.

5. Y ⊥⊥M | T in GT ,M holds, thus by Rule 2, P (Y |M,do(T )) = P (Y | do(M), do(T )).

6. Y ⊥⊥ T |M in GT ,M holds, thus by Rule 3, P (Y | do(T ), do(M)) = P (Y | do(M)).

7. Collecting these results, we have that P (Y | Z, do(T )) = P (Y | do(Z), do(T )) = P (Y |

do(M)).

8. Finally, we can use previous results to obtain the following equation:
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∴ P (Y | do(T ) = t) =
∑
m

P (Y |M = m, do(T ) = t)P (M = m | do(T ) = t) by L.I.E.

=
∑
m

P (Y | do(M)=m, do(T )= t)P (M=m | do(T )= t) by step 5.

=
∑
m

P (Y | do(M) = m)P (M = m | do(T ) = t) by step 7.

=
∑
m

(∑
T=t′

P (Y | T = t′,M=m)P (T = t′)

)
P (M=m | T = t) by step 4.

6.4 The Front Door Model in the Hypothetical Model Framework

We now investigate the same front-door model using the hypothetical framework. Table 24

displays the hypothetical model associated with the Front-door model as a DAG. The bottom

panel of Table 24 presents the LMC for both models.

Table 23: The Empirical and Hypothetical Front-door Models

Empirical Model Hypothetical Model

V

M YT

V

M YT

T̃

LMC LMC
V ⊥⊥ M V ⊥⊥ (M, T̃ )

T ⊥⊥ M |V T ⊥⊥ (M,Y, T̃ )|V
M ⊥⊥ V | T M ⊥⊥ (T, V )|T̃

Y ⊥⊥ T | (V,M) Y ⊥⊥ (T, T̃ ) | (V,M)

T̃ ⊥⊥ (T, V )

Recall that counterfactual outcome in the hypothetical framework is denoted by the

outcome Y conditioned on the hypothetical variable T̃ . Identification consists of expressing

the counterfactual outcome distribution Ph(Y | T̃ = t), which is defined in the hypothetical

model, in terms of the observed distribution Pe(T,M, Y ), defined in the empirical model. The
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connection between the probabilities of the hypothetical and empirical models is governed

by the rules (16)–(17). The first rule states that, if Y ⊥⊥ T̃ | (T,W ) holds for any variables

Y, T̃ , T,W in the hypothetical model, then we can equate Ph(Y | T̃ = t, T = t′,W ) = Pe(Y |

T = t′,W ). On the other hand, Y ⊥⊥ T | (T̃ ,W ) implies that Ph

(
Y | T̃ = t, T = t′,W

)
=

Ph(Y | T = t,W ).

The hypothetical framework requires analysts to find independence relationships of the

hypothetical model that contain T and T̃ . Useful relations are Y ⊥⊥ T̃ | (M,T ) and M ⊥⊥

T | T̃ .54 It is also the case T ⊥⊥ T̃ holds as T̃ is externally specified (exogenous) and does not

cause T . We can then apply rules (16)–(17) to generate the following probability equalities:

Y ⊥⊥ T̃ | ( T , M ) ⇒ Ph

(
Y | T̃ , T = t′ ,M

)
= Pe

(
Y | T = t′ ,M

)
. (35)

M ⊥⊥ T | T̃ ⇒ Ph

(
M | T̃ = t , T

)
= Pe

(
M | T = t

)
. (36)

T ⊥⊥ T̃ | T ⇒ Ph

(
T = t′ | T̃

)
= Pe

(
T = t′

)
. (37)

The causal effect of T on Y of the Front-door model is identified through the following

logic:

Ph

(
Y | T̃ = t

)
=
∑
t′,m

Ph

(
Y | m,T = t′ , T̃ = t

)
Ph

(
m | T = t′, T̃ = t

)
Ph

(
T = t′ | T̃ = t

)
. (38)

=
∑
t′ ,m

Pe

(
Y | m,T = t′

)
Pe

(
m | T = t

)
Pe

(
T = t′

)
. (39)

Equation (38) is a sum of probabilities defined in the hypothetical model by application of the

law of iterated expectation over T and M . Equation (39) replaces each of the hypothetical

model probabilities with empirical model probabilities listed in equations (35)–(37).

The identification of the counterfactual outcomes in the Front-door Model stems from the

three independence relationships in (35)–(37). These independence relationships illustrate

two properties that are at the core of the identification result. The first property is that

the independence relationships alternate between T and T̃ in the positions of conditioning

54The first independence condition is due to the LMC Y ⊥⊥ T̃ | M and (T̃ ,M) ⊥⊥ (T, V ). The second one
is due to the LMC of M .
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variable and independent variable in the right-hand side. We term this property as alternate

conditionals. The second property is that the sequence of conditioning variables on the right-

hand side of (35)–(37) form a sequence Y →M → T that starts at the targeted outcome Y

and arrives at the treatment using the variable M to bridge these variables. We term this

use of M as the bridging property.

Identification is secured whenever the properties of alternating conditionals and the bridg-

ing properties hold. We illustrate these ideas for the complex mediation model of Table 24.

The model has three observed mediating variables M1, M2, M3 (instead of M) and three

unobserved, confounding variables V1, V2, V3 (instead of V ).

Table 24: Using HM to Identify Counterfactuals

Directed Acyclic Graph of the Empirical Model

V1 V2

T M1 M2 M3 Y

V3

Directed Acyclic Graph of the Hypothetical Model

T̃ V1 V2

T M1 M2 M3 Y

V3

The following conditional independence relationships hold for the hypothetical model:

Y ⊥⊥ T̃ | ( T , M3 ,M2,M1) ⇒ Ph

(
Y | T̃ , T = t′ , M3 ,M2,M1

)
= Pe

(
Y | T = t′ , M3 ,M2,M1

)
.

(40)

M3 ⊥⊥ T | ( T̃ , M2 ,M1) ⇒ Ph

(
M3 | T̃ = t , T, M2 ,M1

)
= Pe

(
M3 | T = t , M2 ,M1

)
.

(41)
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M2 ⊥⊥ T̃ | ( T , M1 ) ⇒ Ph

(
M2 | T̃ , T = t′ , M1 )

)
= Pe

(
M2 | T = t′ , M1 )

)
. (42)

M1 ⊥⊥ T | T̃ ⇒ Ph

(
M1 | T̃ = t , T

)
= Pe

(
M1 | T = t

)
. (43)

T ⊥⊥ T̃ | T ⇒ Ph

(
T = t′ | T̃

)
= Pe

(
T = t′

)
. (44)

The set of independence relationships (40)–(44) exhibits the alternate conditionals prop-

erty. The first relationship is conditioned on T , the second on T̃ , followed by T and so on.

The bridging property also holds. The right-hand variable of each independence relationship

provides a bridging sequence: Y ↣M3 ↣M2 ↣M1 ↣ T. The law of iterated expectations

and independence relationships (40)–(44) enable us to express the counterfactual probability

Ph(Y | T̃ ) as:

Hypothetical Model Ph(Y | T̃ = t ) =
∑

t′ ,m3,m2,m1
Ah ·Bh · Ch ·Dh · Eh.

where: Ah = Ph(Y | m3,m2,m1, T = t′ , T̃ = t ).

Bh = Ph(M3 = m3 | m2,m1, T = t′ , T̃ = t ).

Ch = Ph(M2 = m2 | m1, T = t′ , T̃ = t ).

Dh = Ph(M1 = m1 | T = t′ , T̃ = t ).

Eh = Ph(T = t′ | T̃ = t ).

Connection rules (16)–(17) enable us to translate hypothetical probabilities into the em-

pirical probabilities as listed in (40)–(44). The resulting identification equation is presented

below. It displays the alternative pattern of values t and t′ in the same fashion as the

identification equation of the Front-door model:

Empirical Model Pe(Y ( t )) =
∑

t′ ,m3,m2,m1
Ae ·Be · Ce ·De · Ee.

where: Ae = Pe(Y | m3,m2,m1, T = t′ ).

Be = Pe(M3 = m3 | m2,m1, T = t ).

Ce = Pe(M2 = m2 | m1, T = t′ ).

De = Pe(M1 = m1 | T = t ).

Ee = Pe(T = t′ ).
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6.5 Comparing DoC and HM Frameworks

Both DoC and HM employ structural equations and describe causal models with both ob-

served and unobserved variables. They clearly separate the task of defining counterfactuals

and identifying them. Both frameworks enable analysts to disentangle the tasks of causal

analysis in Table 1. Both frameworks employ economic theory to define causal models (Task

1) and the structural equations that underlie the approach.

There are, however, some distinct practices in DoC and HM. When DoC fixes a treatment

variable, it eliminates the equation for T in constructing the joint distribution of variables.

All of the DoC analysis is done within the empirical model so generated.

HM does not eliminate the equation for the treatment variable. Instead, it adds a hy-

pothetical variable. The presence of both treatment and hypothetical variables in the HM

framework facilitates the study of the causal effects. HM can be used to readily analyze

both external manipulation and conditioning, such as the treatment on the treated, whereas

this is outside the scope of DoC. It facilitates examination of causal inference for direct and

indirect effects in which the hypothetical variable replaces some but not all the treatment

inputs of the structural equations. DoC invents new rules to undertake those tasks for each

combination of conditioning variables.

The identification of causal effects (Task 2) requires connecting the hypothetical model

with the empirical model. HM uses two statistical implications to connect the probability

distributions of the hypothetical and empirical models. HM analyses remain within the realm

of standard statistical theory and do not require invocation of non-probabilistic DAG-based

rules.

The DoC machinery consists of three DAG-based rules. It constructs a series of possible

DAGs. Each of them constitutes a causal model that modifies the empirical model. Each

modification of the empirical model corresponds to introducing a new set of conditional

independence relationships. The search for the combinations of DAGs and conditional inde-
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pendence relationships that are required to identify counterfactuals grows exponentially. An

algorithm has been developed to perform this task.55 Calculations with HM are simpler than

those based on DoC. They rely on a single modification of the original DAG, as encoded in

the hypothetical model instead of a growing list of DAGs to implement the three guiding

rules of DoC.

DoC relies critically on DAGs, conditional independence relationships, and a special

set of rules. The HM machinery remains within the statistical realm to make statistics

converse with causality. In doing so, the method is capable of accommodating assumptions

that explore the rich variety of functional form restrictions, distributional assumptions, and

cross-equation and cross-variable relationships that lie outside the scope of DoC.

7 Simultaneous Causality

The Generalized Roy model is usually expressed as a recursive model.56 However, simulta-

neous causality is a property of many economic models. Examples of such models include

those for social interactions, general equilibrium, Walrasian market clearing, or simultane-

ous play in models of industrial organization which are staples of economic theory (see, e.g.,

Mas-Colell et al., 1995; Tamer, 2003). Such models are ignored in discussions of causality in

the NR literature. The NR approach invokes the Stable Unit Treatment Value Assumption

(SUTVA), which excludes the possibility of interactions among agents.57 Such interactions

are usually termed “confounders” and are treated as a problem rather than a source of

information about economic and social behavior.

It is instructive to consider these models because they challenge the approaches used in

the statistical literature, but are easily analyzed by rigorous econometric causal models. The

pioneering econometric models studied by the Cowles Commission featured simultaneity.58

55See Pearl (2009b).
56See, however, Brock and Durlauf (2007); Heckman (1978).
57See, for instance, Holland (1986); Imbens and Rubin (2015).
58See, e.g., Koopmans et al. (1950).
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Haavelmo’s (1943) paper explicitly analyzed causality in a simultaneous system. Many of the

core ideas in simultaneous equations models are ignored or remain unknown to the followers

of the statistical approaches, which rely on recursive formulations, which are considered to

be essential features of causal models.

Simultaneous causality is an essential feature of many structural equation econometric

models.59 The LISREL model of Jöreskog (1973) allows for simultaneity, measurement error

and latent variables proxied by measurements as discussed in Section 4.

The structural systems typically consist of two parts: (a) an autonomous structural

system expressed in terms of latent variables (Bollen, 2002) and (b) a measurement system.

The measurement system proxies the latent variables using observed measurements. The

first part of the structural system consists of structure for person i:

Bηi = αη + Γχi + ωi (45)

where ωi, ηi, χi are vectors of latent variables. The measurement system consists of vectors

of measurements:

Measurement:


yi = αy +Λyηi + εi (measurement for ηi)

xi = αx +ΥX + ξi (measurement for χi)

where εi,Υi, and ξi are vectors of latent variables. These models have been extended to time

series and panel data settings (see e.g. Bollen, 1989; Goldberger and Duncan, 1973; Hansen

and Sargent, 1982).

In a valuable paper, Bollen and Pearl (2013) exposit this system of equations as a causal

model with simultaneity and show how various measurement systems use factor models and

other approaches to proxy the latent variables which may be the variables measured with

error or omitted variables, like ability in an earnings equation, or technical efficiency in

59See Goldberger (1972); Haavelmo (1943, 1944); Koopmans et al. (1950), Goldberger and Duncan (1973).
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a production function. They dispel many misguided criticisms of the structural approach

lodged by advocates of the NR approach. These systems are equipped to use cross equation

restrictions and covariance restrictions to secure identification of causal parameters. Hansen

and Sargent (1982) is an example of this approach applied to time series models.

This literature is rich and we lack the space to exposit it thoroughly. We note that

as previously discussed linear equation versions of these models provide a framework for

proxying V . It is also an approach for studying mediation where analysts can study how

interventions on χi percolate through equation system (43). Schennach (2020) summarizes

a large literature on nonparametric factor and proxy models.

Instead of a general exposition of these systems, we refer the reader to Bollen and Pearl

(2013) and consider a simple two-equation simultaneous equations model of the sort exposited

by Haavelmo (1943). We consider a system of two autonomous (structurally-invariant) causal

equations:

Y1 = gY1(Y2, X1, U1, ϵ1) (46)

Y2 = gY2(Y1, X2, U2, ϵ2) U1 ⧸⊥⊥ U2. (47)

We use this system to demonstrate how causality can be analyzed in simultaneous systems.

Again, ϵ1 and ϵ2 are mutually independent and independent of U1, U2, X1, and X2.

This system of equations represents two maps: gY1 : (Y2, X1, U1) → Y1; gY2 :(Y1, X1, U2) →

Y2. Y1 and Y2 could be actions of a pair of interacting agents.60 To simplify the discussion,

we assume that both equations are twice continuously differentiable. This is a convenience

and not a necessity. The model of equations (46)–(47) is treated in a special way in the

DoC approach. Models with multiple simultaneous equations are standard in the literature

(see, e.g., Bollen, 1989; Fisher, 1966b; Goldberger and Duncan, 1973; Koopmans et al., 1950;

Theil, 1958, 1971).

60In the literature on peer effects, simultaneous equation problems are relabeled as “reflection problems.”
See Manski (1993); Moffitt (2001).
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As previously noted, equations (46) and (47) are assumed to be structural, i.e., invariant

under manipulations of their arguments, so they are stable, autonomous maps. Policies

consist of manipulations of their arguments. Autonomy is one part of the SUTVA assumption

in the NR model.61

In the classical model of market clearing equilibrium, Y1 is price; Y2 is quantity and X1,

X2, U1, and U2 are causal determinants. Equations (46) and (47) are generated by thought

experiments varying the arguments and tracing out the outcomes. Thus, Y1 in (46) could be

the market price that is consistent with hypothetical values Y2, X1, U1. (47) is the analogous

relationship for market quantity Y2. The addition of unobserved (by the economist) variables

U1 and U2 is made in anticipation of empirical applications. In the peer effects literature, Y1

and Y2 are behaviors of two interacting agents (e.g., smoking or drug use).

In terms of our previous notation, the variable set for the empirical model is

Te = {Y1, Y2, X1, X2, U1, U2}. Me(Y1) = {Y2, X1, U1}) and Me(Y2) = {Y1, X2, U2}). The

empirical and hypothetical models are displayed as DAGs in Table 25 given by:62

Table 25: Empirical and Hypothetical Causal Models

Empirical Model Hypothetical Model

X2 Y2 Y1 X1

U2 U1

Ỹ2Ỹ2

X2 Y2 Y1 X1

U2 U1

Ỹ2Ỹ1

The LMC condition does not apply so that the Bayesian net approach fails. “Fixing”

and the hypothetical model approach readily extend to a system of simultaneous equations

for Y1 and Y2, whereas the fundamentally recursive methods based on DAGs require special

treatment.

61The other part is absence of simultaneity or general equilibrium effects. See Heckman (2008a).
62U2 and U1 are reciprocally related.
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7.1 Completeness

“Completeness” assumes the existence of at least a local solution for Y1 and Y2 in terms of

(X1, X2, U1, U2):

Y1 = ϕ1(X1, X2, U1, U2) (48)

Y2 = ϕ2(X1, X2, U1, U2). (49)

These are reduced form equations (see, e.g., Koopmans et al., 1950; Matzkin, 2008, 2013).

They inherit the autonomy properties of the structural equations. Completeness is a property

that guarantees the conceptual possibility of simultaneity, which is not necessarily guaran-

teed. If it fails, the existence of consistent solutions to (46) and (47) is not guaranteed.

Nonetheless autonomous correspondences may still exist and they can be used to make set-

valued causal inferences.63

The causal effect of Y2 on Y1 when Y2 is fixed at y2 is generated by

Y1(y2) = gY1(y2, X, U1).

Symmetrically, the causal effect of Y1 on Y2 when Y1 is fixed at y1 is generated by:

Y2(y1) = gY2(y1, X, U2).

The relationships (46) and (47) can be defined even if they might not be identified or

estimated. The completeness assumption says that there are values of X1, X2, U1, U2 that

generate values of Y1, Y2 consistent with (46) and (47). These involve hypothetical variations.

For certain models no such sets of variables may exist and the models are termed incomplete.

7.2 Can We Hypothetically Vary Y2 and Y1?

If Y2 and Y1 are simultaneously determined, the notion of varying Y2 to change Y1 may seem

impossible. Pearl (2009a) maintains his focus on recursive models and addresses this problem

in a very special way by assuming structural invariance and “shutting one equation down,”

63See, e.g., Heckman (1978); Mas-Colell et al. (1995); Quandt (1988); Tamer (2003).
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assuming the rest of the system remains unchanged. Thus, for example, equation (47) is

suspended, but (46) is maintained. This is consistent with the logic of do-calculus, which

eliminates relationships from systems, assuming invariance of the remaining system. He

sets Y2 to a constant that can be manipulated in (46). This thought experiment converts

a simultaneous system into a recursive system with all other equations assumed to hold as

before. After Y2 is fixed, the do-calculus can be applied.

This approach is cumbersome and strains credibility in many economic contents (e.g.,

person 1 influences 2, but not vice versa), but it is logically possible.64 It is unnecessary

if exclusions in (46) and (47) are used. To show this, we define exclusion of X2 in (46) as

∂gY1

∂X2

= 0 for all (Y2, X1, X2, U1).
65 Exclusion of X1 in (47) is defined as

∂gY2

∂X1

= 0 for all

(Y1, X1, X2, U2). Implicit is the assumption that components of X1 and X2 can be varied.

Under completeness and exclusion X2 from (47), by the chain rule, the causal effect of Y2 on

Y1 is

∂gY1

∂Y2
=
∂Y1
∂X2

/
∂Y2
∂X2

=
∂θ1
∂X2

/
∂θ2
∂X2

.

We may define and identify the causal effects for Y1 on Y2 in an analogous fashion.

Variations in X1 and X2 that respect completeness define the causal parameters when the

components of X1 and X2 can be independently varied.66 No implausible “shutting down” of

any equation in a system while assuming autonomy (structural invariance) of the remaining

system is required.

This logic is now standard and is the basis for an estimation technique, “indirect least

squares” (see Theil, 1958 and Tinbergen, 1930, 1939). It demonstrates the flexibility of

the econometric approach for defining and identifying causal parameters outside the narrow

world of DAGs. Fisher (1966b) gives a range of approaches for identifying systems like

64In a market for a good, shutting down the supply equation would likely alter the properties of demand
curves as agents would face a different market structure altering their expectations. Construction of a theory
consistent counterfactual world would entail such considerations.

65Or more generally, X2 is not an argument of gY1.
66The completeness condition is part of the hypothetical model thought experiment. In some contexts it

may be ruled out as not credible.
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(46) and (47) and more general versions using restrictions within and across equations for

observables and unobservables.

7.3 Econometric Mediation Analysis

We have already discussed mediation analyses in recursive models. These notions extend

to models with simultaneity. Under completeness, reduced form (48) characterizes the net

effect of a policy change X1:

∂Y1
∂X1

=
∂ϕ1(X1, X2, U1, U2)

∂X1

. (50)

Following Klein and Goldberger (1955) and Wright (1921, 1934), we can conduct “medi-

ation analyses” that address problem P-2 and trace the impact of an externally manipulated

X1 on Y1, both through its direct effect on (46) and its indirect effect through Y2:

∂Y1
∂X1

=

(
∂gY1

∂Y2

)
︸ ︷︷ ︸

From
Structure

(
∂Y2
∂X1

)
︸ ︷︷ ︸

From Reduced
Form︸ ︷︷ ︸

Indirect effect
through Y2

+
∂gY1

∂X1︸︷︷︸
From Structure︸ ︷︷ ︸
Direct effect

=
∂ϕ1(X1, X2, U1, U2)

∂X1

This approach can be readily applied to recursive systems and general multiple equation

systems. Reliance on linear equations, while traditional in the literature, is not necessary

and nonparametric approaches are available.67

Mediation analysis is a staple of econometric policy evaluation to examine all channels of

influence of variables (see, e.g., Theil, 1958). All of the tools used to analyze simultaneous

equations are available to estimate these models (See e.g., Amemiya, 1985; Fisher, 1966b;

Matzkin, 2007). Klein and Goldberger (1955) is a classic example of dynamic mediation

analysis in a Keynesian model of the time series of consumption and investment in the U.S.

economy.

67See Matzkin (2008, 2013, 2015) for nonparametric analyses of such systems.
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8 Conclusion

This paper presents the basic framework of the econometric model for causal analysis. We

discuss the definition of causal parameters and approaches to their identification within it.

We consider two recent approaches to causality that are used in the non-economic literature

on causal inference and their relationship with the econometric approach.

The econometric model is based on clearly stated and interpretable models of behavior

that characterize the lessons of economic theory and allow for testing it, for synthesizing

evidence on it from multiple studies, constructing credible policy counterfactuals, including

forecasting policy impacts in new environments and forecasting the likely impacts of policies

never previously implemented. The econometric approach delineates the definition of causal

parameters, their identification and their estimation as three separate tasks.

The two competing statistical approaches are: (a) the Neyman-Rubin (NR) approach

rooted in the statistics of experiments, and (b) the do-calculus (DoC) that originated in

computer science. Both address some of the same problems tackled by the econometric

approach. Each has important, but different, limitations. Neither has the flexibility or

clarity of the econometric approach.

All start from the basic intuitive definition of a causal effect as a ceteris paribus conse-

quence of a change in inputs on outcomes, where the change can be a policy. However, the

rules for constructing and identifying counterfactuals are very different in these approaches.

The do-calculus (DoC) invokes a special set of rules for identifying causal parameters

that lie outside of probability theory and that use a limited class of identifying assumptions

for behavioral equations. It relies heavily on recursive directed-acyclic-graphs and assump-

tions about conditional independence relationships. Its rigid rules preclude the use of many

traditional techniques of identification and estimation.
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The Neyman-Rubin (NR) approach eschews the benefits of structural equations and many

fruitful strategies for their identification. Reflecting its origins, it casts all policy problems

into a “treatment-control” framework. Randomized experiments rather than thought ex-

periments are foundational elements in this approach. In some versions, it conflates issues

of definition with issues of identification. Its lack of reliance on structural equations with

explicit links to theory and explicit analyses of unobservables, makes it difficult to interpret

estimates obtained from it to analyze well-posed economic questions with it using the large

toolkit of modern econometrics, or to synthesize studies within a common framework.

Econometrics has a rich body of theory and tools to address policy problems. Applied

economists would do well by using the impressive set of conceptual tools available from

econometric theory.
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Lee, S. and B. Salanié (2018). Identifying effects of multivalued treatments. Econometrica 86,
1939–1963.

78



Levin, B. and H. Robbins (1983, Autumn). Urn models for regression analysis, with ap-
plications to employment discrimination studies. Law and Contemporary Problems 46 (4,
Statistical Inference in Litigation), 247–267.

Lewbel, A. (2019). The identification zoo: Meanings of identification in econometrics. Jour-
nal of Economic Literature 57 (4), 835–903.

Lopez-Paz, D., R. Nishihara, S. Chintala, B. Schölkopf, and L. Bottou (2017). Discovering
causal signals in images. Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 6979–6989.

Lucas, Jr., R. E. (1976). Econometric policy evaluation: A critique. In K. Brunner and A. H.
Meltzer (Eds.), The Phillips Curve and Labor Markets, Volume 1 of Carnegie-Rochester
Conference Series on Public Policy. Amsterdam: North-Holland.

Manski, C. F. (1993, July). Identification of endogenous social effects: The reflection prob-
lem. Review of Economic Studies 60 (3), 531–542.

Marschak, J. (1953). Economic measurements for policy and prediction. In W. C. Hood and
T. C. Koopmans (Eds.), Studies in Econometric Method, pp. 1–26. New Haven, CT: Yale
University Press.

Marshall, A. (1961). Principles of Economics (Ninth (Valorium) Edition ed.). London,
Macmillan for the Royal Economic Society.

Mas-Colell, A., M. D. Whinston, and J. R. Green (1995). Microeconomic Theory. New York:
Oxford University Press.

Matzkin, R. L. (1993, July). Nonparametric identification and estimation of polychotomous
choice models. Journal of Econometrics 58 (1–2), 137–168.

Matzkin, R. L. (2007). Nonparametric identification. In J. J. Heckman and E. E. Leamer
(Eds.), Handbook of Econometrics, Volume 6B. Amsterdam: Elsevier.

Matzkin, R. L. (2008). Identification in nonparametric simultaneous equations models.
Econometrica 76 (5), 945–978.

Matzkin, R. L. (2013). Nonparametric identification of structural economic models. Annual
Review of Economics 5 (1), 457–486.

Matzkin, R. L. (2015). Estimation of nonparametric models with simultaneity. Economet-
rica 83 (1), 1–66.

McFadden, D. (1974). Conditional logit analysis of qualitative choice behavior. In P. Zarem-
bka (Ed.), Frontiers in Econometrics, pp. 105–142. New York: Academic Press.

Moffitt, R. A. (2001). Policy interventions, low-level equilibria, and social interactions. In
S. Durlauf and P. Young (Eds.), Social Dynamics, Volume 4, pp. 6–17. MIT Press.

79



Mogstad, M. and A. Torgovitsky (2018). Identification and extrapolation of causal effects
with instrumental variables. Annual Review of Economics 2, 577–613.

Morgan, S. L. and C. Winship (2015). Counterfactuals and Causal Inference. Cambridge
University Press.

Nerlove, M. (1967). Recent empirical studies of the CES and related production functions.
In The Theory and Empirical Analysis of Production, pp. 55–136. National Bureau of
Economic Research.

Neyman, J. (1923). Statistical problems in agricultural experiments. Journal of the Royal
Statistical Society II (Supplement)(2), 107–180.

Olley, G. S. and A. Pakes (1996, November). The dynamics of productivity in the telecom-
munications equipment industry. Econometrica 64 (6), 1263–1297.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible In-
ference. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Pearl, J. (1993). [Bayesian analysis in expert systems]: Comment: Graphical models, causal-
ity and intervention. Statistical Science 8 (3), 266–269.

Pearl, J. (1995, December). Causal diagrams for empirical research. Biometrika 82 (4),
669–688.

Pearl, J. (2009a). Causal inference in statistics: An overview. Statistics Surveys 3, 96–146.

Pearl, J. (2009b). Causality: Models, Reasoning, and Inference (2nd ed.). New York: Cam-
bridge University Press.

Pearl, J. (2009c). Myth, confusion, and science in causal analysis. Technical Report, UCLA,
Department of Statistics .

Pearl, J. (2012). The do-calculus revisited. CoRR abs/1210.4852.

Peters, J., D. Jazzing, and B. Schölkopf (2017). Elements of Causal Inference: Foundations
and Learning Algorithms. Cambridge, MA: MIT Press.

Prakasa Rao, B. L. S. (1992). Identifiability in Stochastic Models: Characterization of Prob-
ability Distributions. Probability and mathematical statistics. Boston: Academic Press.

Pratt, J. W. and R. Schlaifer (1984, March). On the nature and discovery of structure.
Journal of the American Statistical Association 79 (385), 9–33.

Quandt, R. E. (1958, December). The estimation of the parameters of a linear regres-
sion system obeying two separate regimes. Journal of the American Statistical Associa-
tion 53 (284), 873–880.

Quandt, R. E. (1988). The Econometrics of Disequilibrium. New York: Blackwell.

80



Robins, J. (1986). A new approach to causal inference in mortality studies with a sustained
exposure period: Application to control of the healthy worker survivor effect. Mathematical
Modelling 7 (9–12), 1393–1512.

Rosen, S. (1986). The theory of equalizing differences. In O. Ashenfelter and R. Layard
(Eds.), Handbook of Labor Economics, Volume 1, pp. 641–692. New York: North-Holland.

Rosenbaum, P. R. and D. B. Rubin (1983, April). The central role of the propensity score
in observational studies for causal effects. Biometrika 70 (1), 41–55.

Roy, A. (1951, June). Some thoughts on the distribution of earnings. Oxford Economic
Papers 3 (2), 135–146.

Rubin, D. B. (1974, October). Estimating causal effects of treatments in randomized and
nonrandomized studies. Journal of Educational Psychology 66 (5), 688–701.

Rubin, D. B. (1978, January). Bayesian inference for causal effects: The role of randomiza-
tion. Annals of Statistics 6 (1), 34–58.

Schennach, S. M. (2020). Mismeasured and unobserved variables. In S. N. Durlauf, L. P.
Hansen, J. J. Heckman, and R. L. Matzkin (Eds.), Handbook of Econometrics, Volume
7A, Volume 7 of Handbook of Econometrics, pp. 487–565. Elsevier.

Shpitser, I. and J. Pearl (2006, November). Identification of joint interventional distributions
in recursive semi-markovian causal models. In Proceedings of the 21st National Confer-
ence on Artificial Intelligence and the 18th Innovative Applications of Artificial Intelligence
Conference, AAAI-06/IAAI-06, Proceedings of the National Conference on Artificial In-
telligence, pp. 1219–1226. 21st National Conference on Artificial Intelligence and the 18th
Innovative Applications of Artificial Intelligence Conference, AAAI-06/IAAI-06 ; Confer-
ence date: 16-07-2006 Through 20-07-2006.

Shpitser, I. and J. Pearl (2009). Effects of treatment on the treated: Identification and gen-
eralization. In Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence,
UAI 2009, Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence,
UAI 2009, pp. 514–521. AUAI Press.

Tamer, E. (2003, January). Incomplete simultaneous discrete response model with multiple
equilibria. Review of Economic Studies 70 (1), 147–165.

Telser, L. G. (1964, September). Iterative estimation of a set of linear regression equations.
Journal of the American Statistical Association 59 (307), 845–862.

Theil, H. (1953). Esimation and Simultaneous Correlation in Complete Equation Systems.
The Hague: Central Planning Bureau. Mimeographed memorandum.

Theil, H. (1958). Economic Forecasts and Policy. Number 15 in Contributions to Economic
Analysis. Amsterdam: North-Holland Publishing Company.

Theil, H. (1971). Principles of Econometrics. New York: Wiley.

81



Tinbergen, J. (1930, October). Bestimmung und deutung von angebotskurven ein beispiel.
Zeitschrift für Nationalökonomie 1 (5), 669–679.

Tinbergen, J. (1939, January). Statistical Testing of Business Cycle Theories: Part II:
Business Cycles in the United States of America, 1919–1932. Geneva: League of Nations,
Economic Intelligence Service.

Vytlacil, E. J. (2002, January). Independence, monotonicity, and latent index models: An
equivalence result. Econometrica 70 (1), 331–341.

Wright, S. (1921). Correlation and causation. Journal of Agricultural Research 20, 557–585.

Wright, S. (1934). The method of path coefficients. Annals of Mathematical Statistics 5 (3),
161–215.

Yamamoto, T. (2014). Identification and estimation of causal mediation effects with treat-
ment noncompliance. Unpublished Manuscript, MIT Department of Political Science.

82


	Introduction
	Causality as a Thought Experiment
	Regression: Conditional Expectation or Thought Experiment?
	Thought Experiments
	The Econometric Approach to Causality
	Four Distinct Policy Questions

	Econometric Causal Models
	Econometric Causal Models
	A Causal Model
	The Generalized Roy Model
	Counterfactual Approaches: Formalizing Frisch's Insight
	Identification of Counterfactual Outcomes

	Econometric Approaches to Identification of Counterfactuals in the Generalized Roy Model
	Instrumental Variables
	Stratification
	The Matching Assumption
	Matching on Proxied Unobservables
	Control Functions
	Panel data Analysis and Other Approaches

	The Neyman-Rubin (NR) Causal Model
	The Generalized Roy Model under NR
	The Matching Model in NR
	Mediation Models under NR: An example
	Using Structural Equations to Identify the Mediation Model with IV 


	The Do-Calculus and the Hypothetical Model
	The Rules of DoC
	Using Do-Calculus to Investigate the Roy Model
	The Front-door Model
	The Front Door Model in the Hypothetical Model Framework
	Comparing DoC and HM Frameworks

	Simultaneous Causality
	Completeness
	Can We Hypothetically Vary Y2 and Y1?
	Econometric Mediation Analysis

	Conclusion

