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Appendix A Definition and Data Sources of Control Vari-

ables

A.1 Prefecture-Level Characteristics

The prefecture-level characteristics used as controls in the regressions are listed below. All

the variables are measured in 1990. Data on GDP per capita are obtained from the China

City Statistical Yearbook of 1990.

The following four variables are calculated using the 1990 China population census.

• Years of education: Prefecture’s average years of education of population aged above

six.

• Population age: Prefecture’s average population age.

• Fertility rate: Prefecture’s average births to women aged 20 to 45 years old.

• Child population: Prefecture’s total population under age 18.

A.2 Policy Controls

Other policy controls used in the main regressions are listed below.

• Output tariff: Data on output tariff at the HS-6 product level are obtained from

the World Integrated Trade Solution (WITS) database. The HS-6 product level data

are aggregated to 3-digit industry classification in the 1990 census data, using a

concordance table between the Chinese Industrial Classification (CIC) system and

HS codes. The simple average tariff for each 3-digit industry is then computed. The

prefectures’ exposure to output tariff is measured using the 1990 employment-share-

weighted-average tariff in 2001 across 3-digit industries in the prefecture as in Eq. (1),

i.e., 𝜏𝑜𝑝 =
∑

𝑗 𝑆
1990

𝑗𝑝
× 𝜏𝑜

𝑗,2001
. Here, 𝜏𝑜

𝑗,2001
is output tariff of industry 𝑗 in 2001. The

tariff measure 𝜏𝑜𝑝 is then interacted with the post-PNTR dummy and included in the

specification.

• Input tariff: We first calculate the 3-digit industry-level input tariff as a weighted

average of the industry-level output tariff, using as the weight the share of inputs

in the output value from the China input-output table for 1997. Specifically, input

tariff 𝜏𝑖
𝑗
=

∑
𝑘 𝜏

𝑜
𝑘
×𝜔𝑘 𝑗 , where 𝜏𝑜

𝑘
is output tariff of industry 𝑘, and 𝜔𝑘 𝑗 is the share of

inputs from industry 𝑘 used by industry 𝑗, using the 1997 China input-output table.

The prefectures’ exposure to input tariff as the 1990 employment-share-weighted-

average input tariff in 2001 across 3-digit industries in the prefecture as in Eq. (1),
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i.e., 𝜏𝑖𝑝 =
∑

𝑗 𝑆
1990

𝑗𝑝
× 𝜏𝑖

𝑗 ,2001
. We then interact the input tariff 𝜏𝑖𝑝 with the post-PNTR

dummy and include the interaction in the specification.

• External tariff: Data on industry-level external tariff is measured as a weighted

average of the destination country’s tariffs on China’s imports, using China’s exports

to each destination country as the weight. Specifically, external tariff 𝜏𝑒
𝑗
=

∑
𝑑 𝜏

𝑒
𝑑𝑗
× 𝑌𝑑𝑗

𝑌𝑑
,

where 𝜏𝑒
𝑑𝑗

is country 𝑑’s tariffs on Chinese imports of industry 𝑗, 𝑌𝑑𝑗 is China’s

exports of industry 𝑗 to destination country 𝑑, and 𝑌𝑑 is China’s exports to the

destination country 𝑑. The export data come from the United Nations Comtrade

Database. We then compute prefectures’ exposure to the external tariff as the 1990

employment-share-weighted-average external tariff in 2001 across 3-digit industries

in the prefecture as in Eq. (1), i.e., 𝜏𝑒𝑝 =
∑

𝑗 𝑆
1990

𝑗𝑝
×𝜏𝑒

𝑗,2001
, and then interact the external

tariff 𝜏𝑒𝑝 with the post-PNTR dummy and include it in the specification.

• Input relationship-specific index: We proxy barriers to investment in China using

an input relationship-specificity index proposed by Nunn (2007). Based on the

classifications in Rauch (1999), Nunn (2007) considers goods that are neither reference

priced nor sold on exchange markets to be relationship-specific goods and computes

the proportion of relationship-specific inputs, for each product in 1987 US input-

output table. The 1987 IO industry is mapped to the HS 10-digit product level using

concordance provided by the Bureau of Economic Analysis and then averaged to the

HS-6 product level. The measure is converted to a 3-digit industry classification in

the 1990 China census data, using a concordance table between CIC system and HS

codes. We then calculate prefectures’ exposure using the 1990 employment-share-

weighted-average input relationship-specific index across 3-digit industries in the

prefecture as in Eq. (1). The measure is interacted with the post-PNTR dummy and

included in the specification.

• MFA exposure: We use data on the Multifiber Arrangement (MFA) “quota-bound”

product at the HS 6-digit product level in year 2001 from Khandelwal et al. (2013).

The HS 6-digit product level is mapped to the 3-digit Chinese industry level in the

census 1990 using the concordance between CIC system and HS codes. Based on

these 3-digit industry-level data, we construct a prefecture-level exposure to MFA

using employment-share-weighted “quota-bound” product across 3-digit industries

in the prefecture as in Eq. (1). The measure is interacted with the post-PNTR dummy

and included in the specification.

• NTR rate: We use the U.S. import tariff rate at the HS-6 product level as a measure

of NTR tariff rates. The tariff data are obtained from the WITS database, and then

aggregated up to the 3-digit industry classification in the 1990 census data using a

concordance table between CIC system and HS codes. The prefecture-level exposure
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to NTR tariff is computed using employment-share-weighted US import tariff rates

in 2001 across 3-digit industries in the prefecture as in Eq. (1). The measure is then

interacted with the post-PNTR dummy and is included in the specification.

Appendix B Causal Analyses

B.1 Relationships between Average, Conditional, and Marginal Effects

Section 3 of the main paper defines three causal effects of interest. The average effects are

𝐴𝑇𝑇𝑡 , 𝐴𝑇𝐸𝑡 ; the conditional effects are 𝐴𝑇𝑇𝑡(𝑚) in (3) and 𝐴𝑇𝐸𝑡(𝑚) in (4); and the marginal

effects are 𝑀𝐴𝑇𝑇𝑡(𝑚) and 𝑀𝐴𝑇𝐸𝑡(𝑚) in (5).

The relationship between average and conditional effect is simple. We can obtain the

average effects 𝐴𝑇𝑇𝑡 and 𝐴𝑇𝐸𝑡 by integrating the conditional effects 𝐴𝑇𝑇𝑡(𝑚) in (3) and

𝐴𝑇𝐸𝑡(𝑚) in (4) over the associated probability distribution of 𝑀. For instance, the average

causal effect is given by:

𝐴𝑇𝐸𝑡 ≡ 𝐸(𝑌𝑡(1) − 𝑌𝑡(0)) =
∫

𝐸(𝑌𝑡(1, 𝑚) − 𝑌𝑡(0, 𝑚)|𝑀 = 𝑚)𝑑𝐹𝑀(𝑚) =
∫

𝐴𝑇𝐸𝑡(𝑚)𝑑𝐹𝑀(𝑚),

while the average treatment effect on the treated is:

𝐴𝑇𝑇𝑡 ≡ 𝐸(𝑌𝑡(1) − 𝑌𝑡(0)|𝐷 = 1) =
∫

𝐸(𝑌𝑡(1, 𝑚) − 𝑌𝑡(0, 𝑚)|𝑀 = 𝑚, 𝐷 = 1)𝑑𝐹𝑀 |𝐷=1
(𝑚),

=

∫
𝐴𝑇𝑇𝑡(𝑚)𝑑𝐹𝑀 |𝐷=1

(𝑚),

where 𝐹𝑀(𝑚) = 𝑃(𝑀 ≤ 𝑚) denotes the cumulative distribution function of the moderator

and 𝐹𝑀 |𝐷=1(𝑚) = 𝑃(𝑀 ≤ 𝑚 |𝐷 = 1) is the conditional cumulative distribution.

The relationship between average and marginal effects is not as straightforward. Con-

sider the case of a continuous moderator 𝑀 whose support is given by the interval

ℳ = [𝑚, 𝑚]. Note that the integral of 𝑀𝐴𝑇𝑇𝑡 or 𝑀𝐴𝑇𝐸𝑡 in (5) over the support of the

moderator 𝑀 does not deliver 𝐴𝑇𝑇𝑡 or 𝐴𝑇𝐸𝑡 . In the case of 𝑀𝐴𝑇𝐸𝑡 , we have that:∫ 𝑚

𝑚

𝑀𝐴𝑇𝐸𝑡(𝑚)𝑑𝑚 = 𝐴𝑇𝐸𝑡(𝑚, 𝑚) − 𝐴𝑇𝐸𝑡(𝑚, 𝑚). (21)

The next proposition clarifies the relationship between the average, marginal and condi-

tional effects:

Proposition P.1. Consider a DiD model where A.1–A.2 holds, 𝑀 is a continuous random

variable in [𝑚, 𝑚], and 𝐴𝑇𝐸𝑡(𝑚) in (4) be a differentiable function. Then for any value

𝑚∗ ∈ [𝑚, 𝑚] we have that:

𝐴𝑇𝐸𝑡 =

∫ 𝑚

𝑚

𝑀𝐴𝑇𝐸𝑡(𝑚)
(
1[𝑚 > 𝑚∗] (1 − 𝐹𝑀(𝑚)) − 1[𝑚 < 𝑚∗]𝐹𝑀(𝑚)

)
𝑑𝑚 + 𝐴𝑇𝐸𝑡(𝑚∗ |𝑚∗). (22)

If 𝐴𝑇𝑇𝑡(𝑚) in (3) is differentiable, then (22)–(24) also hold if we were to replace 𝐴𝑇𝐸𝑡 ,

𝑀𝐴𝑇𝐸𝑡 , 𝐴𝑇𝐸𝑡(𝑚∗), 𝐹𝑀(𝑚) by 𝐴𝑇𝑇𝑡 , 𝑀𝐴𝑇𝑇𝑡 , 𝐴𝑇𝑇𝑡(𝑚∗), 𝐹𝑀 |𝐷=1
(𝑚) respectively.
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Proposition P.1 shows that is it possible to express the average treatment effect in terms

of the marginal response 𝑀𝐴𝑇𝐸𝑡 and the conditional effect 𝐴𝑇𝐸𝑡(𝑚 |𝑚). The proposi-

tion states that for any value 𝑚∗
of the moderator, the difference between 𝐴𝑇𝐸𝑡 and the

conditional effect 𝐴𝑇𝐸𝑡(𝑚∗) can be expressed as a weighted average of the marginal ef-

fect 𝑀𝐴𝑇𝐸𝑡(𝑚) over the moderator’s probability distribution. Moreover, the weights for

𝑀𝐴𝑇𝐸𝑡(𝑚) such that 𝑚 > 𝑚∗
are positive and given by (1 − 𝐹𝑀(𝑚)) , while the weights for

𝑀𝐴𝑇𝐸𝑡(𝑚) such that 𝑚 > 𝑚∗
are the negative values of the CDF 𝐹𝑀(𝑚).

Now suppose there are values of the moderator that make the treatment ineffective.

Notationally, this means that there is a set ℳ0 ⊂ ℳ such that for any value 𝑚0 ∈ ℳ0 we

have the following:

𝑌𝑖𝑡(𝑑, 𝑚0) = 𝑌𝑖𝑡(0, 𝑚0); 𝑑 ∈ {0, 1} for all units 𝑖 ∈ ℐ.

This means that 36

In our empirical setting, 𝑀 moderates the impact of trade tariffs on the economy of

the Chinese prefecture and 𝐷 is the policy of tariff changes. The economic impact of the

policy depends on the share of the prefecture’s industries targeted by the tariff change. The

policy has limited effect on prefectures with closed economies or those whose industries

are not targeted by the policy. In this case 𝑀𝑖 = 0 ≡ 𝑚0.
A consequence of Proposition P.1 is that for any value 𝑚0 ∈ ℳ0 ⊂ [𝑚, 𝑚] we have that:

𝐴𝑇𝐸𝑡 =

∫ 𝑚

𝑚

𝑀𝐴𝑇𝐸𝑡(𝑚)
(
1[𝑚 > 𝑚0] (1 − 𝐹𝑀(𝑚0)) − 1[𝑚 < 𝑚0]𝐹𝑀(𝑚)

)
𝑑𝑚. (23)

Moreover, if 𝑚 ∈ ℳ0 , then 𝐴𝑇𝐸𝑡 =

∫ 𝑚

𝑚

𝑀𝐴𝑇𝐸𝑡(𝑚) (1 − 𝐹𝑀(𝑚)) 𝑑𝑚. (24)

The equations above mean that if we set 𝑚∗
to a value 𝑚0 where no treatment moderation

occurs, then 𝐴𝑇𝐸 can be expressed as a function of its marginal effect as in equation (23).

The weights of this equation can be further simplified into equation (24) if the lowest value

of the moderator 𝑚 renders the treatment ineffective.

B.2 Conditional Parallel Trend does not Identify Average Effects

A common goal of the empirical evaluation is to examine how the moderator affects the

effect of the treatment on the outcomes. The natural procedure to assess the impact of the

moderator is to compare the treatment effects across the values of the moderator 𝑀. The

following notation is useful to investigate this comparison:

𝐴𝑇𝑇𝑡(𝑚 |𝑚′) = 𝐸(𝑌𝑡(1, 𝑚) − 𝑌𝑡(0, 𝑚)|𝐷 = 1, 𝑀 = 𝑚′),
36If we set the moderator value 𝑚0 to zero, than we have 𝑌𝑖𝑡(𝑑, 0) = 𝑌𝑖𝑡(0, 0); 𝑑 ∈ {0, 1} for all units 𝑖 ∈ ℐ.
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which denotes the treatment on the treated when we fix the moderator at the value 𝑚

conditioning on the units 𝑖 that share the moderator value of 𝑀𝑖 = 𝑚′. According to the

notation of the main paper, we have that 𝐴𝑇𝑇𝑡(𝑚 |𝑚) = 𝐴𝑇𝑇𝑡(𝑚).
The Conditional Parallel Trend Assumption A.3 enable us to decompose the difference

between the treated on the treated as:

𝐴𝑇𝑇𝑡(𝑚 |𝑚) − 𝐴𝑇𝑇𝑡(𝑚′ |𝑚′) (25)

= 𝐸(𝑌𝑡(1, 𝑚) − 𝑌𝑡(0, 𝑚)|𝐷 = 1, 𝑀 = 𝑚) − 𝐸(𝑌𝑡(1, 𝑚′) − 𝑌𝑡(0, 𝑚′)|𝐷 = 1, 𝑀 = 𝑚′) (26)

= 𝐸(𝑌𝑡(1, 𝑚) − 𝑌𝑡(0, 𝑚)|𝐷 = 1, 𝑀 = 𝑚) − 𝐸(𝑌𝑡(1, 𝑚′) − 𝑌𝑡(0, 𝑚′)|𝐷 = 1, 𝑀 = 𝑚)︸                                                                                                  ︷︷                                                                                                  ︸
𝐴𝑇𝑇𝑡 (𝑚 |𝑚) − 𝐴𝑇𝑇𝑡 (𝑚′ |𝑚)

(27)

+ 𝐸(𝑌𝑡(1, 𝑚′) − 𝑌𝑡(0, 𝑚′)|𝐷 = 1, 𝑀 = 𝑚) − 𝐸(𝑌𝑡(1, 𝑚′) − 𝑌𝑡(0, 𝑚′)|𝐷 = 1, 𝑀 = 𝑚′)︸                                                                                                    ︷︷                                                                                                    ︸
𝐴𝑇𝑇𝑡 (𝑚′ |𝑚) − 𝐴𝑇𝑇𝑡 (𝑚′ |𝑚′)

. (28)

In summary, we can express the difference of conditional 𝐴𝑇𝑇 parameters as:

𝐴𝑇𝑇𝑡(𝑚 |𝑚) − 𝐴𝑇𝑇𝑡(𝑚′ |𝑚′) = 𝐴𝑇𝑇𝑡(𝑚 |𝑚) − 𝐴𝑇𝑇𝑡(𝑚′ |𝑚)︸                            ︷︷                            ︸
Effect Difference

+𝐴𝑇𝑇𝑡(𝑚′ |𝑚) − 𝐴𝑇𝑇𝑡(𝑚′ |𝑚′)︸                              ︷︷                              ︸
Selection Bias on the Moderator

. (29)

The decomposition above shows that the difference between the treated on the treated

effects comprises two terms. The first term is the difference in the treatment effect when

we fix the moderator at different levels for the same units 𝑖 such that 𝑀𝑖 = 𝑚. It accounts

for the change in the treatment-on-the-treated effect due to a shift in the moderator.

The second term in (29) is due to selection bias. It accounts is the change in the

treatment on the treated effect between two sets of units. The parameter 𝐴𝑇𝑇𝑡(𝑚′|𝑚)
denotes the treatment effect when we fix the mediator 𝑀 to the value 𝑚′ ∈ ℳ for units 𝑖

that share the moderator value 𝑚. The parameter 𝐴𝑇𝑇𝑡(𝑚′|𝑚) also fixes the mediator 𝑀 to

the value 𝑚′ ∈ ℳ , however this effect is evaluated for a different set of units 𝑖 that share

the moderator value 𝑚′.

The main conclusion of the decomposition (29) is that the Conditional Parallel Trends

Assumption A.3 is not sufficiently strong to render a clear causal interpretation of the

differences between the treatment on the treated effects.

The Conditional Parallel Trend Assumption A.3 is not sufficient to identify 𝐴𝑇𝐸𝑡 or

𝐴𝑇𝐸𝑡(𝑚) in (4) either. To understand this limitation, it is useful to rewrite the conditional

average treatment effect 𝐴𝑇𝐸𝑡(𝑚) in terms of the conditional treatment on the treated

𝐴𝑇𝑇𝑡(𝑚) :

𝐴𝑇𝐸𝑡(𝑚 |𝑚) = 𝐸(𝑌𝑡(1, 𝑚) − 𝑌𝑡(0, 𝑚)|𝑀 = 𝑚) (30)

= 𝐸(𝑌𝑡(1, 𝑚) − 𝑌𝑡(0, 𝑚)|𝑀 = 𝑚, 𝐷 = 1)𝑃(𝐷 = 1|𝑀 = 𝑚)
+ 𝐸(𝑌𝑡(1, 𝑚) − 𝑌𝑡(0, 𝑚)|𝑀 = 𝑚, 𝐷 = 0)𝑃(𝐷 = 0|𝑀 = 𝑚) (31)

= 𝐴𝑇𝑇𝑡(𝑚 |𝑚)𝑃(𝐷 = 1|𝑀 = 𝑚)
+ 𝐸(𝑌𝑡(1, 𝑚) − 𝑌𝑡(0, 𝑚)|𝑀 = 𝑚, 𝐷 = 0)𝑃(𝐷 = 0|𝑀 = 𝑚). (32)
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The Conditional Parallel Trends Assumption A.3 enable us to identify 𝐴𝑇𝑇𝑡(𝑚 |𝑚), but not

𝐸(𝑌𝑡(1, 𝑚)−𝑌𝑡(0, 𝑚)|𝑀 = 𝑚, 𝐷 = 0), which is the causal effect the treatment for the control

group. Note that the control group never experience the treatment itself. Its identification

requires an assumption that enable us to use the treatment group to evaluate the causal

effect for the control group.

The lack of identification of average effects presented here is inline with the results

in Callaway, Goodman-Bacon, and Sant’Anna (2021), who shows that the common trend

assumption is not sufficient to identify causal effects of interest in the DiD design with a

continuous treatment.

B.3 Common DiD Regression under Parallel Trend Assumptions
The TWFE regression in (2) is numerically equivalent to the following regression:37

Δ𝑌𝑖𝑡 = 𝛼 + 𝛽𝐷𝑖𝐷 ·𝑊𝑖 + 𝜖𝑖 , where 𝑊𝑖 = 𝐷𝑖 · 𝑀𝑖 . (33)

We seek to examines the causal content of the expected value of the OLS estimator for

the parameter 𝛽𝐷𝑖𝐷 in the regression above. To do so, consider the following notation.

Let 𝑀𝑑 = 𝐸(𝑀 |𝐷 = 𝑑); 𝑑 ∈ {1, 0} be expected value of the moderator condition on

the treatment group. Let Δ𝑌𝑡 𝑑 = 𝐸(𝑌𝑡 − 𝑌𝑡−1 |𝐷 = 𝑑); 𝑑 ∈ {1, 0} denotes the expected

value of the outcome time difference condition on the treatment groups. Finally, let

𝑃𝑑 = 𝑃(𝐷 = 𝑑); 𝑑 ∈ {0, 1} denotes the probability of each treatment group. Under this

notation, we can state the following theorem:

Theorem T.5. Under standard OLS assumptions, the expected value of the OLS estimator

for moderator DiD parameter 𝛽𝐷𝑖𝐷 in (33) is given by the following:

𝛽𝐷𝑖𝐷 =

Cov(Δ𝑌𝑡 , 𝑀 |𝐷 = 1) +
(
Δ𝑌𝑡1 − Δ𝑌𝑡0

)
· 𝑀1 · 𝑃0

Var(𝑀 |𝐷 = 1) + 𝑀
2

1
· 𝑃0

(34)

Moreover, consider replacing the moderator 𝑀 by a linear transformation 𝑀∗ = 𝑀 −𝑀1.
Then, under Assumptions A.1 and A.3, the expected value of the OLS estimator for 𝛽𝐷𝑖𝐷

in (33) is given by the following:

𝛽∗𝐷𝑖𝐷 =

∫
𝜕𝐸(𝑌𝑡(1) − 𝑌𝑡−1(0)|𝐷 = 1, 𝑀∗ = 𝑚)

𝜕𝑚
𝜔(𝑚) 𝑑𝑚 (35)

where 𝜔(𝑚) =
𝐸(𝑀∗ |𝑀∗ > 𝑚, 𝐷 = 1)

(
1 − 𝐹𝑀∗ |𝐷=1

(𝑚)
)

Var(𝑀 |𝐷 = 1) . (36)

Proof. See Appendix C.5. □

37This is the linear regression of the outcome time-difference Δ𝑌𝑡 on a constant term 𝛼 and the interaction

between the treatment indicator 𝐷 and the moderator variable 𝑀,; that is, 𝑊 = 𝐷 · 𝑀. Standard OLS

assumptions are that the observed data (𝑌𝑖𝑡 , 𝑌𝑖𝑡−1 , 𝐷𝑖 , 𝑀𝑖) denote random variables that are independent and

identically distributed (i.i.d.) across 𝑖 and 𝜖𝑖 is an i.i.d. unobserved mean-zero exogenous error term that is

statistically independent of 𝐷𝑖 , 𝑀𝑖 .
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Equation (34) is a statistical result arising from applying the Frisch-Waugh-Lovell The-

orem (1933; 1963).38 Under a linear transformation of the moderator, 𝛽𝐷𝑖𝐷 in (35) is a

weighted average of the time difference of the counterfactual outcomes for the treatment

group (33). 39

The main assessment of Theorem T.5 is that the estimate for the parameter 𝛽𝐷𝑖𝐷 in the

regressions (2) or (33) cannot be easily described in terms of the marginal effects in (5).

Appendix C Mathematical Proofs

C.0 Proof of Proposition P.1
The proposition requires multiple applications of the formula for the integration by parts.

Namely, let ℎ(𝑥) : R→ R be an integrable function and 𝑔(𝑥) : R→ R be an a differentiable

function, then the following equation holds:∫ 𝑏

𝑎

𝜕𝑔(𝑥)
𝜕𝑥

ℎ(𝑥)𝑑𝑥 =

[
𝑔(𝑥)ℎ(𝑥)

] 𝑏
𝑎
−

∫ 𝑏

𝑎

𝑔(𝑥)𝜕ℎ(𝑥)
𝜕𝑥

𝑑𝑥 (37)

Note that the moderator 𝑀 is a continuous random variable in [𝑚, 𝑚], and 𝐴𝑇𝐸𝑡(𝑚) is

differentiable. Thereby 𝐴𝑇𝐸𝑡(𝑚) = 𝐸(𝑌𝑡(1, 𝑚) − 𝑌𝑡(0, 𝑚)|𝑀 = 𝑚) is continuous in [𝑚, 𝑚].
Moreover, we have that

𝐴𝑇𝐸𝑡 =

∫ 𝑚

𝑚

𝐴𝑇𝐸𝑡(𝑚) 𝑓𝑀(𝑚)𝑑𝑚,

where 𝑓𝑀(𝑚) > 0 is the probability density of 𝑀 and 𝐹𝑀(𝑚) =
∫ 𝑚

𝑚
𝑓𝑀(𝑚)𝑑𝑚 = 𝑃(𝑀 ≤ 𝑚)

denotes the cumulative probability function of 𝑀 such that 𝐹𝑀(𝑚) = 0 and 𝐹𝑀(𝑚) = 1.

Let𝑚∗
be any value in [𝑚, 𝑚].We first apply (37) to the integral

∫ 𝑚

𝑚∗ 𝑀𝐴𝑇𝐸𝑡(𝑚) (1 − 𝐹𝑀(𝑚)) 𝑑𝑚 :

38This result can also be understood as an ANOVA decomposition that rewrites the OLS coefficient as a

weighted average of the intra- and between-groups regression coefficients (see, for instance, Section 4.2 of

Yitzhaki (2013)). If 𝑀𝑖 = 1 for all 𝑖 ∈ ℐ , then 𝛽𝐷𝑖𝐷 in Eq. (34) yields the standard DiD estimator for the TWFE

model, 𝛽𝐷𝑖𝐷 = Δ𝑌𝑡1 − Δ𝑌𝑡0.
39The weights 𝜔(𝑚) in (36) are a function of truncated expectation and the CDF of the moderator. These

weights are always positive and sum to one.
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∫ 𝑚

𝑚∗
𝑀𝐴𝑇𝐸𝑡(𝑚) (1 − 𝐹𝑀(𝑚)) 𝑑𝑚

=

∫ 𝑚

𝑚∗

𝜕𝐴𝑇𝐸𝑡(𝑚)
𝜕𝑚

(1 − 𝐹𝑀(𝑚)) 𝑑𝑚

=

[
𝐴𝑇𝐸𝑡(𝑚) (1 − 𝐹𝑀(𝑚))

]𝑚
𝑚∗

+
∫ 𝑚

𝑚∗
𝐴𝑇𝐸𝑡(𝑚) 𝑓𝑀(𝑚)𝑑𝑚

=

(
𝐴𝑇𝐸𝑡(𝑚 |𝑚) (1 − 𝐹𝑀(𝑚))

)
−

(
𝐴𝑇𝐸𝑡(𝑚∗) (1 − 𝐹𝑀(𝑚∗))

)
+

∫ 𝑚

𝑚∗
𝐴𝑇𝐸𝑡(𝑚) 𝑓𝑀(𝑚)𝑑𝑚,

= −
(
𝐴𝑇𝐸𝑡(𝑚∗) · (1 − 𝐹𝑀(𝑚∗))

)
+

∫ 𝑚

𝑚∗
𝐴𝑇𝐸𝑡(𝑚) 𝑓𝑀(𝑚)𝑑𝑚,

∴

∫ 𝑚

𝑚∗
𝐴𝑇𝐸𝑡(𝑚) 𝑓𝑀(𝑚)𝑑𝑚 =

∫ 𝑚

𝑚∗
𝑀𝐴𝑇𝐸𝑡(𝑚) (1 − 𝐹𝑀(𝑚)) 𝑑𝑚 + 𝐴𝑇𝐸𝑡(𝑚∗) · (1 − 𝐹𝑀(𝑚∗)) , (38)

where the first equality comes from the definition of 𝑀𝐴𝑇𝐸𝑡(𝑚). The second equality

applies the integration by parts. The fourth equality is due to the fact that 𝐹𝑀(𝑚) = 1. The

last equality simply rearranges the terms.

Next, we apply (37) to the integral

∫ 𝑚∗

𝑚
𝑀𝐴𝑇𝐸𝑡(𝑚)

(
− 𝐹𝑀(𝑚)

)
𝑑𝑚 :∫ 𝑚∗

𝑚

𝑀𝐴𝑇𝐸𝑡(𝑚)
(
− 𝐹𝑀(𝑚)

)
𝑑𝑚

=

∫ 𝑚∗

𝑚

𝜕𝐴𝑇𝐸𝑡(𝑚)
𝜕𝑚

(
− 𝐹𝑀(𝑚)

)
𝑑𝑚

=

[
𝐴𝑇𝐸𝑡(𝑚) (−𝐹𝑀(𝑚))

]𝑚∗

𝑚
+

∫ 𝑚∗

𝑚

𝐴𝑇𝐸𝑡(𝑚) 𝑓𝑀(𝑚)𝑑𝑚

=

(
𝐴𝑇𝐸𝑡(𝑚∗) (−𝐹𝑀(𝑚∗))

)
−

(
𝐴𝑇𝐸𝑡(𝑚 |𝑚)

(
−𝐹𝑀(𝑚)

) )
+

∫ 𝑚∗

𝑚

𝐴𝑇𝐸𝑡(𝑚) 𝑓𝑀(𝑚)𝑑𝑚,

=

(
𝐴𝑇𝐸𝑡 · 𝐹𝑀(𝑚∗)

)
+

∫ 𝑚∗

𝑚

𝐴𝑇𝐸𝑡(𝑚) 𝑓𝑀(𝑚)𝑑𝑚,

∴

∫ 𝑚∗

𝑚

𝐴𝑇𝐸𝑡(𝑚) 𝑓𝑀(𝑚)𝑑𝑚 =

∫ 𝑚∗

𝑚

𝑀𝐴𝑇𝐸𝑡(𝑚)
(
− 𝐹𝑀(𝑚)

)
𝑑𝑚 − 𝐴𝑇𝐸𝑡(𝑚∗) · 𝐹𝑀(𝑚∗), (39)

where the first equality comes from the definition of 𝑀𝐴𝑇𝐸𝑡(𝑚). The second equality

applies the integration by parts. The fourth equality is due to the fact that 𝐹𝑀(𝑚) = 1. The

last equality simply rearranges the terms.

The final expression is obtained by summing equations (38) and (39). The sum of the

left-hand side of these two equations give us the average treatment effect:∫ 𝑚∗

𝑚

𝐴𝑇𝐸𝑡(𝑚) 𝑓𝑀(𝑚)𝑑𝑚 +
∫ 𝑚

𝑚∗
𝐴𝑇𝐸𝑡(𝑚) 𝑓𝑀(𝑚)𝑑𝑚 =

∫ 𝑚

𝑚

𝐴𝑇𝐸𝑡(𝑚) 𝑓𝑀(𝑚)𝑑𝑚 = 𝐴𝑇𝐸𝑡 . (40)
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The sum of the right-hand side of equations (38) and (39) give us the following expression:(∫ 𝑚∗

𝑚

𝑀𝐴𝑇𝐸𝑡(𝑚)
(
− 𝐹𝑀(𝑚)

)
𝑑𝑚 − 𝐴𝑇𝐸𝑡(𝑚∗) · 𝐹𝑀(𝑚∗)

)
+

(∫ 𝑚

𝑚∗
𝑀𝐴𝑇𝐸𝑡(𝑚) (1 − 𝐹𝑀(𝑚)) 𝑑𝑚 + 𝐴𝑇𝐸𝑡(𝑚∗) · (1 − 𝐹𝑀(𝑚∗))

)
(41)

=

∫ 𝑚

𝑚

𝑀𝐴𝑇𝐸𝑡(𝑚) ·
(
1[𝑚 ≥ 𝑚∗](1 − 𝐹𝑀(𝑚)) − 1[𝑚 ≤ 𝑚∗] · 𝐹𝑀(𝑚)

)
𝑑𝑚 + 𝐴𝑇𝐸𝑡(𝑚∗). (42)

We can equate the left-hand in (40) with the right-hand side in (42) to obtain the desired

expression:

𝐴𝑇𝐸𝑡 =

∫ 𝑚

𝑚

𝑀𝐴𝑇𝐸𝑡(𝑚) ·
(
1[𝑚 ≥ 𝑚∗](1 − 𝐹𝑀(𝑚)) − 1[𝑚 ≤ 𝑚∗] · 𝐹𝑀(𝑚)

)
𝑑𝑚 + 𝐴𝑇𝐸𝑡(𝑚∗).

C.1 Proof of Theorem T.1

The identification of 𝐴𝑇𝑇𝑡(𝑚) in (6) is obtained by the following equations:

𝐴𝑇𝑇𝑡(𝑚) = 𝐸[𝑌𝑡(1, 𝑚) − 𝑌𝑡(0, 𝑚)|𝐷 = 1, 𝑀 = 𝑚],
= 𝐸[𝑌𝑡(1, 𝑚) − 𝑌𝑡−1(0, 𝑚)|𝐷 = 1, 𝑀 = 𝑚] − 𝐸[𝑌𝑡(0, 𝑚) − 𝑌𝑡−1(0, 𝑚)|𝐷 = 1, 𝑀 = 𝑚],
= 𝐸[𝑌𝑡(1, 𝑚) − 𝑌𝑡−1(0, 𝑚)|𝐷 = 1, 𝑀 = 𝑚] − 𝐸[𝑌𝑡(0, 𝑚) − 𝑌𝑡−1(0, 𝑚)|𝐷 = 0, 𝑀 = 𝑚],
= 𝐸[Δ𝑌𝑡 |𝐷 = 1, 𝑀 = 𝑚] − 𝐸[Δ𝑌𝑡 |𝐷 = 0, 𝑀 = 𝑚],

where the first equality is due to the definition of 𝐴𝑇𝑇𝑡(𝑚) in (3). The second equality

adds and subtracts 𝐸[𝑌𝑡−1(0, 𝑚)|𝐷 = 1, 𝑀 = 𝑚]. The third equality invokes the Conditional

Parallel Trends Assumption A.3. The last equality is due to A.1. Namely, the expected

value of 𝑌𝑡(1, 𝑚) and 𝑌𝑡−1(0, 𝑚) are observed when conditioning on (𝐷 = 1, 𝑀 = 𝑚),
and the expected value of 𝑌𝑡(0, 𝑚) and 𝑌𝑡−1(0, 𝑚) are observed when conditioning on

𝐷 = 0, 𝑀 = 𝑚.

The identification equation for 𝐴𝑇𝑇𝑡 in (7) stems from the following equations:

𝐴𝑇𝑇𝑡 = 𝐸[𝑌𝑡(1) − 𝑌𝑡(0)|𝐷 = 1],

=

∫
𝑚

𝐸[𝑌𝑡(1) − 𝑌𝑡(0)|𝐷 = 1, 𝑀 = 𝑚]𝑑𝐹𝑀 |𝐷=1
(𝑚),

=

∫
𝑚

𝐸[𝑌𝑡(1, 𝑚) − 𝑌𝑡(0, 𝑚)|𝐷 = 1, 𝑀 = 𝑚]𝑑𝐹𝑀 |𝐷=1
(𝑚),

=

∫
𝑚

𝐸[𝑌𝑡(1, 𝑚) − 𝑌𝑡(0, 𝑚)|𝐷 = 1, 𝑀 = 𝑚]𝑃(𝐷 = 1|𝑀)
𝑃(𝐷 = 1) 𝑑𝐹𝑀(𝑚),

where the second equation is due to the law of iterated expectations. The third equation

is due to A.1 and the fourth equation is due to the Bayes theorem.
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C.2 Proof of Theorem T.2

The identification of 𝐴𝑇𝐸𝑡(𝑚) in (8) is obtained by the following equations:

𝐴𝑇𝐸𝑡(𝑚) = 𝐸[𝑌𝑡(1, 𝑚) − 𝑌𝑡(0, 𝑚)|𝑀 = 𝑚],
= 𝐸[𝑌𝑡(1, 𝑚) − 𝑌𝑡−1(0, 𝑚)|𝑀 = 𝑚] − 𝐸[𝑌𝑡(0, 𝑚) − 𝑌𝑡−1(0, 𝑚)|𝑀 = 𝑚],
= 𝐸[𝑌𝑡(1, 𝑚) − 𝑌𝑡−1(0, 𝑚)|𝐷 = 1, 𝑀 = 𝑚] − 𝐸[𝑌𝑡(0, 𝑚) − 𝑌𝑡−1(0, 𝑚)|𝐷 = 0, 𝑀 = 𝑚],
= 𝐸[Δ𝑌𝑡 |𝐷 = 1, 𝑀 = 𝑚] − 𝐸[Δ𝑌𝑡 |𝐷 = 0, 𝑀 = 𝑚],

where the first equality is due to the definition of 𝐴𝑇𝐸𝑡(𝑚) in (3). The second equality

adds and subtracts 𝐸[𝑌𝑡−1(0, 𝑚)|𝑀 = 𝑚]. The third equality invokes the Strong Parallel

Trends A.4 and the Full Support A.2 . The last equality is due to A.1. Namely, the expected

value of 𝑌𝑡(1, 𝑚) and 𝑌𝑡−1(0, 𝑚) are observed when conditioning on (𝐷 = 1, 𝑀 = 𝑚),
and the expected value of 𝑌𝑡(0, 𝑚) and 𝑌𝑡−1(0, 𝑚) are observed when conditioning on

𝐷 = 0, 𝑀 = 𝑚.

The identification equation for 𝐴𝑇𝐸𝑡 in (9) stems from the following equations:

𝐴𝑇𝐸𝑡 = 𝐸[𝑌𝑡(1) − 𝑌𝑡(0)],

=

∫
𝑚

𝐸[𝑌𝑡(1) − 𝑌𝑡(0)|𝑀 = 𝑚]𝑑𝐹𝑀(𝑚),

=

∫
𝑚

𝐸[𝑌𝑡(1, 𝑚) − 𝑌𝑡(0, 𝑚)|𝐷 = 1, 𝑀 = 𝑚]𝑑𝐹𝑀(𝑚),

where the second equation is due to the law of iterated expectations and the third equation

is due to A.1.

C.3 Proof of Theorem T.3
The DiD estimator for 𝛽𝐷𝑖𝐷 in the TWFE regression (10) is numerically equivalent to the

estimator obtained from the following regression:40

Δ𝑌𝑖𝑡 = 𝛼 + 𝛾 · 𝐷𝑖 + 𝜅 · 𝑀𝑖 + 𝛽𝐷𝑖𝐷 ·𝑊𝑖 + 𝜐𝑖 , such that 𝑊𝑖 = 𝐷𝑖 · 𝑀𝑖 , (43)

where Δ𝑌𝑖𝑡 = 𝑌𝑖𝑡 − 𝑌𝑖𝑡−1 is the temporal outcome difference for unit 𝑖.

The first sampling weighting scheme of the theorem is uniform, which means that the

regression employs the actual distribution of the data. Equation (11) is a standard result in

the OLS literature. By using the full set of indicator interaction, the DiD estimator evaluates

the difference of the OLS estimators if we were to regress two separate regressions, one for

the control (untreated) group and another for the treatment group.

Equations (12)–(13) are based on the Yitzhaki’s Weights (Yitzhaki 2013), which states

that the covariance of any random variables𝑌, 𝑋 such that𝐸(|𝑌 |) < ∞ and𝐸(|𝑋 |) = 𝜇𝑋 < ∞

40The following expression denotes the regression of the outcome time-difference Δ𝑌𝑡 on a constant term

𝛼, the treatment indicator 𝐷, the moderator 𝑀, and their interaction 𝑊 = 𝐷 · 𝑀.
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and 𝐸(𝑌 |𝑋) is differentiable, can be expressed as:

Cov(𝑌, 𝑋) =
∫ ∞

−∞

𝜕𝐸(𝑌 |𝑋 = 𝑥)
𝜕𝑥

𝜔(𝑥)𝑑𝑥,

such that 𝜔(𝑥) = 𝐸(𝑋 − 𝜇𝑋 |𝑋 > 𝑥)(1 − 𝐹𝑋(𝑥)).

According to the equation above, we can express the covariances Cov(Δ𝑌𝑡 , 𝑀 |𝐷 = 𝑑); 𝑑 ∈
{0, 1} by the following expression:

Cov(Δ𝑌𝑡 , 𝑀 |𝐷 = 𝑑) =
∫ ∞

−∞

𝜕𝐸(Δ𝑌𝑡 |𝐷 = 𝑑, 𝑀 = 𝑚)
𝜕𝑚

𝜔(𝑚)𝑑𝑚; 𝑑 ∈ {0, 1}, (44)

such that 𝜔(𝑚) = 𝐸(𝑀 − 𝑀𝑑 |𝑀 > 𝑚, 𝐷 = 𝑑)(1 − 𝐹𝑀 |𝐷=𝑑(𝑚)),

where 𝑀𝑑 ≡ 𝐸(𝑀 |𝐷 = 𝑑); 𝑑 ∈ {0, 1}.
The second weighting scheme sets the distribution of the moderator of the treatment

and control group to the distribution of the treatment group. The DiD parameter of the

regression still delivers the difference of two separate OLS regressions that evaluate the

covariance between Δ𝑌𝑡 and 𝑀 over the variance of 𝑀 for each treatment group. The

weighting scheme modifies the distribution of 𝑀. The first OLS parameter 𝛽1 is associated

with the treatment group (𝐷 = 1) and the asymptotic cumulative distribution of 𝑀 is given

by 𝐹𝑀 |𝐷=1
(𝑚). The expected value of this OLS estimator is given by:

𝐸(𝛽1) =
∫ ∞

−∞

𝜕𝐸(Δ𝑌𝑡 |𝐷 = 1, 𝑀 = 𝑚)
𝜕𝑚

𝜔1(𝑚)𝑑𝑚 (45)

where 𝜔1(𝑚) =
𝐸(𝑀 − 𝐸(𝑀 |𝐷 = 1)|𝑀 > 𝑚, 𝐷 = 1)(1 − 𝐹𝑀 |𝐷=1

(𝑚))
Var(𝑀 |𝐷 = 1) . (46)

The second OLS parameter 𝛽0 is associated with the control group (𝐷 = 0) and the

cumulative distribution of 𝑀 is also given by 𝐹𝑀 |𝐷=1
(𝑚). The expected value of this OLS

estimator is given by:

𝐸(𝛽0) =
∫ ∞

−∞

𝜕𝐸(Δ𝑌𝑡 |𝐷 = 0, 𝑀 = 𝑚)
𝜕𝑚

𝜔1(𝑚)𝑑𝑚, (47)

where 𝜔1(𝑚) is the same as in (46). The difference between the expected value of the OLS

estimators in (53) and (47) is:

𝐸(𝛽1) − 𝐸(𝛽0) =
∫ ∞

−∞

𝜕 (𝐸(Δ𝑌𝑡 |𝐷 = 1, 𝑀 = 𝑚) − 𝐸(Δ𝑌𝑡 |𝐷 = 0, 𝑀 = 𝑚))
𝜕𝑚

𝜔1(𝑚)𝑑𝑚 (48)

=

∫ ∞

−∞
𝑀𝐴𝑇𝑇𝑡(𝑚)𝜔1(𝑚)𝑑𝑚, (49)

where the second equality is due to T.1.

The last weighting scheme sets the conditional distribution of the moderator of the

treatment and control groups to the unconditional distribution of the moderator. The DiD

parameter of the regression also delivers the difference of two separate OLS regressions

that evaluate the covariance between Δ𝑌𝑡 and 𝑀 over the variance of 𝑀 for each treatment

group. However, the weighting scheme modifies the distribution of 𝑀. The first OLS

parameter 𝛽∗
1

is associated with the treatment group (𝐷 = 1) and the asymptotic cumulative
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distribution of 𝑀 is given by 𝐹𝑀(𝑚). The expected value of this OLS estimator is given by:

𝐸(𝛽∗
1
) =

∫ ∞

−∞

𝜕𝐸(Δ𝑌𝑡 |𝐷 = 1, 𝑀 = 𝑚)
𝜕𝑚

𝜔∗(𝑚)𝑑𝑚 (50)

where 𝜔∗(𝑚) =
𝐸(𝑀 − 𝐸(𝑀 |𝐷 = 1)|𝑀 > 𝑚, 𝐷 = 1)(1 − 𝐹𝑀 |𝐷=1

(𝑚))
Var(𝑀 |𝐷 = 1) . (51)

The second OLS parameter 𝛽∗
0

is associated with the control group (𝐷 = 0) and the

cumulative distribution of 𝑀 is also given by 𝐹𝑀(𝑚). The expected value of this OLS

estimator is given by:

𝐸(𝛽∗
0
) =

∫ ∞

−∞

𝜕𝐸(Δ𝑌𝑡 |𝐷 = 0, 𝑀 = 𝑚)
𝜕𝑚

𝜔∗(𝑚)𝑑𝑚, (52)

where 𝜔∗(𝑚) is the same as in (51). The difference between the expected value of the two

OLS estimators in (50) and (52) is:

𝐸(𝛽∗
1
) − 𝐸(𝛽∗

0
) =

∫ ∞

−∞

𝜕 (𝐸(Δ𝑌𝑡 |𝐷 = 1, 𝑀 = 𝑚) − 𝐸(Δ𝑌𝑡 |𝐷 = 0, 𝑀 = 𝑚))
𝜕𝑚

𝜔∗(𝑚)𝑑𝑚 (53)

=

∫ ∞

−∞
𝑀𝐴𝑇𝐸𝑡(𝑚)𝜔∗(𝑚)𝑑𝑚, (54)

where the second equality is due to T.2.
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C.4 Proof of Theorem T.4

The OLS estimator of the linear regression in (14) is numerically equivalent to the estimator

of the regression (15), that is,

Δ𝑌𝑖𝑡 = 𝛼 + 𝛽𝐷𝑖𝐷 · 𝑀𝑖 + (𝜖𝑖𝑡 − 𝜖𝑖𝑡−1). (55)

It is useful to rewrite the dependent variable Δ𝑌𝑖𝑡 in the following manner:

Δ𝑌𝑖𝑡 ≡ 𝑌𝑖𝑡 − 𝑌𝑖𝑡−1 (56)

= 𝑌𝑖𝑡(1) − 𝑌𝑖𝑡−1(0) (57)

=
(
𝑌𝑖𝑡(1) − 𝑌𝑖𝑡(0)

)
+

(
𝑌𝑖𝑡(0) − 𝑌𝑖𝑡−1(0)

)
(58)

=
(
𝑌𝑖𝑡(1) − 𝑌𝑖𝑡(0)

)
+

(
(𝜏𝑡 − 𝜏𝑡−1) + (𝜐𝑖𝑡 − 𝜐𝑖𝑡−1)

)
(59)

Equation (56) simply uses the definition that Δ𝑌𝑖𝑡 is the outcome time difference. Equa-

tion (57) uses Assumption A.1 and the fact that all units are treated, 𝐷 = 1, thus, in period

𝑡 − 1, none of the units are treated, while in period 𝑡 , all units are treated. Equation (58)

adds and subtracts the term 𝑌𝑖𝑡(0). Equation (59) uses the assumption that the counterfac-

tual outcome for the untreated units is given by𝑌𝑖𝑡(0) = 𝜅𝑖 +𝜏𝑡 + 𝑓0(𝑀𝑖)+𝜐𝑖𝑡 for 𝑡 and 𝑡−1.

Thus, 𝑌𝑖𝑡(0) − 𝑌𝑖𝑡−1(0) = (𝜏𝑡 − 𝜏𝑡−1) + (𝜐𝑖𝑡 − 𝜐𝑖𝑡−1) as stated in (59).

The expected value of 𝛽𝐷𝑖𝐷-estimator is given by:

𝛽𝐷𝑖𝐷 =

𝐶𝑜𝑣
(
Δ𝑌𝑡 , 𝑀

)
𝑉𝑎𝑟(𝑀) , (60)

=

𝐶𝑜𝑣
( (
𝑌𝑖𝑡(1) − 𝑌𝑖𝑡(0)

)
+

(
(𝜏𝑡 − 𝜏𝑡−1) + (𝜐𝑖𝑡 − 𝜐𝑖𝑡−1), 𝑀

) )
𝑉𝑎𝑟(𝑀) , (61)

=

𝐶𝑜𝑣
(
𝑌𝑖𝑡(1) − 𝑌𝑖𝑡(0), 𝑀

)
𝑉𝑎𝑟(𝑀) . (62)

Equation (60) is due to independence the independence between error terms 𝜖 and 𝑀.

Equation (61) replaces Δ𝑌𝑡 by the expression in (59). Equation (62) is due to the indepen-

dence of employs the (𝜐𝑡 − 𝜐𝑡−1) and 𝑀 and because (𝜏𝑡 − 𝜏𝑡−1) is a constant term.

We can now apply Yitzhaki’s Weights (Yitzhaki 2013), who shows that the covariance

of any random variables 𝑌, 𝑋 such that 𝐸(|𝑌 |) < ∞ and 𝐸(|𝑋 |) = 𝜇𝑋 < ∞ and 𝐸(𝑌 |𝑋) is

differentiable, can be expressed as:

Cov(𝑌, 𝑋)
Var(𝑋) =

∫ ∞

−∞

𝜕𝐸(𝑌 |𝑋 = 𝑥)
𝜕𝑥

𝜔(𝑥)𝑑𝑥, (63)

such that 𝜔(𝑥) = 𝐸(𝑋 − 𝐸(𝑋)|𝑋 > 𝑥)(1 − 𝐹𝑋(𝑥))
Var(𝑋) (64)

where the weighting function 𝜔(𝑥) is positive and integrate to one. Under the Full Support

Assumption A.2, we can apply equation (63)–(64) to equation (62) in order to obtain the
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following expression:

𝛽𝐷𝑖𝐷 =

∫
𝜕𝐸(𝑌𝑡(1) − 𝑌𝑡(0)|𝑀 = 𝑚, 𝐷 = 1)

𝜕𝑚

𝐸(𝑀 − 𝐸(𝑀))|𝑀 > 𝑚, 𝐵 = 1)
(
1 − 𝐹𝑀 |𝐷=1

(𝑚)
)

Var(𝑀 |𝐷 = 1) 𝑑𝑚 (65)

=

∫
𝑀𝐴𝑇𝑇𝑡(𝑚)

𝐸(𝑀 − 𝐸(𝑀))|𝑀 > 𝑚, 𝐷 = 1)
(
1 − 𝐹𝑀 |𝐷=1

(𝑚)
)

Var(𝑀 |𝐷 = 1) 𝑑𝑚. (66)

Equation (65) simply applies the Yitzhaki’s Weights, while (66) uses the definition of

𝑀𝐴𝑇𝑇𝑡 . The specification is conditioned on 𝐷 = 1 because all agents belong to the treated

group. This proof did not explicitly invoke the Conditional Parallel Trends (A.3) since the

condition is implied by the linear equation that defines the counterfactual outcomes for

the untreated.

The second part of the theorem assumes that the observed distribution of the moderator,

𝑃(𝑀 = 𝑚 |𝐷 = 1), is equal to the unconditional distribution 𝑃(𝑀 = 𝑚). Moreover, the

Strong Parallel Trend enable us to equate 𝑀𝐴𝑇𝑇𝑡(𝑚) = 𝑀𝐴𝑇𝐸𝑡(𝑚). These two features

enable us to express 𝛽𝐷𝑖𝐷 in (66) as:

𝛽𝐷𝑖𝐷 =

∫
𝑀𝐴𝑇𝑇𝑡(𝑚)

𝐸(𝑀 − 𝐸(𝑀))|𝑀 > 𝑚, 𝐷 = 1)
(
1 − 𝐹𝑀 |𝐷=1

(𝑚)
)

Var(𝑀 |𝐷 = 1) 𝑑𝑚, (67)

=

∫
𝑀𝐴𝑇𝐸𝑡(𝑚)𝐸(𝑀 − 𝐸(𝑀))|𝑀 > 𝑚) (1 − 𝐹𝑀(𝑚))

Var(𝑀) 𝑑𝑚. (68)
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C.5 Proof of Theorem T.5

This proof adopts a short-hand notation. Let 𝑀𝑑 = 𝐸(𝑀 |𝐷 = 𝑑); 𝑑 =∈ {1, 0} denotes the ex-

pected value of the moderator condition on the treatment group; LetΔ𝑌𝑑 = 𝐸(𝑌𝑡−𝑌𝑡−1 |𝐷 =

𝑑); 𝑑 =∈ {1, 0} denotes the expected value of the outcome time difference condition on the

treatment groups; Let 𝑃𝑑 = 𝑃(𝐷 = 𝑑); 𝑑 ∈ {0, 1} denotes the probability of each treatment

group; and Δ𝑌 = 𝐸(Δ𝑌) = Δ𝑌1𝑃1 + Δ𝑌0𝑃0.
The expected value of the OLS estimator of the parameter 𝛽𝐷𝑖𝐷 in (33) evaluates the

following ratio:

𝛽𝐷𝑖𝐷 + Cov(Δ𝑌𝑡 , 𝐷 · 𝑀)
Var(𝐷 · 𝑀) (69)

We can express the numerator of (69) as:

Cov(Δ𝑌𝑡 , 𝐷 · 𝑀) = 𝐸((Δ𝑌𝑡 − Δ𝑌) · 𝑀 |𝐷 = 1)𝑃1 (70)

= 𝐸(Δ𝑌𝑡 · 𝑀 |𝐷 = 1)𝑃1 − Δ𝑌 · 𝑀1𝑃1 (71)

= 𝐸(Δ𝑌𝑡 · 𝑀 |𝐷 = 1)𝑃1 − (Δ𝑌1𝑃1 + Δ𝑌0𝑃0)𝑀1𝑃1 (72)

= (𝐸(Δ𝑌𝑡 · 𝑀 |𝐷 = 1) − Δ𝑌1𝑃1𝑀1 + Δ𝑌0𝑃0𝑀1)𝑃1 (73)

= (𝐸(Δ𝑌𝑡 · 𝑀 |𝐷 = 1) − Δ𝑌1𝑀1 + Δ𝑌1𝑀1(1 − 𝑃1) − Δ𝑌0𝑃0𝑀1)𝑃1 (74)

= (Cov(Δ𝑌𝑡 , 𝑀 |𝐷 = 1) + Δ𝑌1𝑀1𝑃0 − Δ𝑌0𝑃0𝑀1)𝑃1 (75)

= Cov(Δ𝑌𝑡 , 𝑀 |𝐷 = 1)𝑃1 + (Δ𝑌1 − Δ𝑌0)𝑃0𝑀1𝑃1 (76)

= (Cov(Δ𝑌𝑡 , 𝑀 |𝐷 = 1) + (Δ𝑌1 − Δ𝑌0)𝑃0𝑀1)𝑃1 (77)

We can express the denominator of (69) as:

Var(𝐷 · 𝑀) = 𝐸((𝑀 · 𝐷 − 𝐸(𝑀 · 𝐷)) · (𝑀 · 𝐷)) (78)

= 𝐸((𝑀 · 𝐷 − 𝑀1𝑃1) · (𝑀 · 𝐷)) (79)

= 𝐸((𝑀 − 𝑀1𝑃1) · 𝑀 |𝐷 = 1)𝑃1 (80)

= (𝐸(𝑀2 |𝐷 = 1) − 𝑀
2

1
𝑃1) · 𝑃1 (81)

= (𝐸(𝑀2 |𝐷 = 1) − 𝑀
2

1
𝑃1 − 𝑀

2

1
𝑃0 + 𝑀

2

1
𝑃0) · 𝑃1 (82)

= ((𝐸(𝑀2 |𝐷 = 1) − 𝑀
2

1
) + 𝑀

2

1
𝑃0) · 𝑃1 (83)

= (Var(𝑀 |𝐷 = 1) + 𝑀
2

1
𝑃0) · 𝑃1 (84)

The ratio of (77) and (84) generates the following equation:

Cov(Δ𝑌𝑡 , 𝐷 · 𝑀)
Var(𝐷 · 𝑀) = =

Cov(Δ𝑌𝑡 , 𝑀 |𝐷 = 1) + (Δ𝑌1 − Δ𝑌0)𝑃0𝑀1

Var(𝑀 |𝐷 = 1) + 𝑀
2

1
𝑃0

(85)

If we set 𝑀1 = 0, then we have that:

Cov(Δ𝑌𝑡 , 𝐷 · 𝑀)
Var(𝐷 · 𝑀) = =

Cov(Δ𝑌𝑡 , 𝑀 |𝐷 = 1)
Var(𝑀 |𝐷 = 1) (86)

The next part of the theorem employs the Yitzhaki’s Weights (Yitzhaki 2013). Using

integration by parts, it is easy to show that the covariance of any random variables 𝑌, 𝑋
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such that 𝐸(|𝑌 |) < ∞ and 𝐸(|𝑋 |) = 𝜇𝑋 < ∞ and 𝐸(𝑌 |𝑋) is differentiable, can be expressed

as:

Cov(𝑌, 𝑋) =
∫ ∞

−∞

𝜕𝐸(𝑌 |𝑋 = 𝑥)
𝜕𝑥

𝐸(𝑋 − 𝜇𝑋 |𝑋 > 𝑥)(1 − 𝐹𝑋(𝑥))𝑑𝑥, (87)

Moreover, we can apply (87) to express the variance of a random variable 𝑋 as:

Var(𝑋) ≡ Cov(𝑋, 𝑋) =
∫ ∞

−∞
𝐸(𝑋 − 𝜇𝑋 |𝑋 > 𝑥)(1 − 𝐹𝑋(𝑥))𝑑𝑥. (88)

Setting 𝑀1 ≡ 𝐸(𝑀 |𝐷 = 1) = 0, and applying the formula (87) to the OLS estimator in (85),

we obtain:

Cov(Δ𝑌𝑡 , 𝐷 · 𝑀)
Var(𝐷 · 𝑀) =

=

∫
𝜕𝐸(Δ𝑌𝑡 |𝐷 = 1, 𝑀 = 𝑚)

𝜕𝑚

𝐸(𝑀 |𝑀 > 𝑚, 𝐷 = 1)
(
1 − 𝐹𝑀 |𝐷=1

(𝑚)
)

Var(𝑀 |𝐷 = 1) 𝑑𝑚

=

∫
𝜕𝐸(𝑌𝑡(1) − 𝑌𝑡−1(0)|𝐷 = 1, 𝑀 = 𝑚)

𝜕𝑚

𝐸(𝑀 |𝑀 > 𝑚, 𝐷 = 1)
(
1 − 𝐹𝑀 |𝐷=1

(𝑚)
)

Var(𝑀 |𝐷 = 1) 𝑑𝑚

Equation (88) and the feature that 𝑀1 = 0 assures that the weights in the equation above

are always positive and integrate to one.
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Appendix D Additional Tables
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Table A1: Impact of PNTR on Adolescent Physical Health, Cognition and School

Dropout Rates

(1) (2) (3)

Panel A. Physical health index

Post × NTR gap 0.030 0.065 0.066

(0.065) (0.077) (0.076)

Observations 5976 5976 5976

Control mean -0.00 -0.00 -0.00

Panel B. Cognitive function index

Post × NTR gap 0.023 0.077 0.072

(0.065) (0.062) (0.057)

Observations 4892 4892 4892

Control mean 0.19 0.19 0.19

Panel C. School dropout rate

Post × NTR gap -0.026 -0.017 -0.015

(0.030) (0.033) (0.033)

Observations 5977 5977 5977

Control mean 0.26 0.26 0.26

Prefecture-of-birth fixed effects Yes Yes Yes

Year-of-birth fixed effects Yes Yes Yes

Prefecture-specific linear trend Yes Yes Yes

Post × Other trade policies Yes Yes Yes

Post × Initial prefecture characteristics Yes Yes

Individual characteristics Yes

Notes: Data are from the 2016–2018 CFPS. This table reports results of the DiD regressions of mental health

outcomes on the interaction of the prefecture-level NTR gap and a post-PNTR indicator. Regressions in

column 1 control for prefecture of birth fixed effects, year of birth fix effects, prefecture-specific linear trend

in year of birth, and the post-PNTR indicator interacted with other trade policies including China’s output,

input and external tariffs, NTR rates, MFA quotas, and contract intensity. Regressions in column 2 further

control for the post-PNTR indicator interacted with initial prefecture characteristics including GDP per

capita, average population age, average population years of schooling, total number of children, and fertility

rate. Regressions in column 3 further control for individual characteristics including age, gender, father’s

and mother’s age, and indicator variables for whether the mother and father completed middle school.

Standard errors are clustered at the prefecture of birth level. ***, **, and * denote significance at the 1, 5, and

10 percent levels.
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Table A2: Robustness Checks: Alternative Measures of the NTR Gap

Any depression Severe depression

(1) (2)

Panel A. NTR gap measured by excluding industries with the highest NTR gap

Post × NTR gap 0.003 -0.043***

(0.030) (0.016)

Observations 14521 14521

Control mean 0.28 0.09

Panel B. NTR gap measured by excluding industries with the lowest NTR gap

Post × NTR gap 0.002 -0.044**

(0.037) (0.021)

Observations 14521 14521

Control mean 0.28 0.09

Panel C. NTR gap winsorized at the 5/95 percentiles

Post × NTR gap 0.002 -0.047**

(0.035) (0.019)

Observations 14521 14521

Control mean 0.28 0.09

Panel D. NTR gap measured by excluding nontradable industries

Post × NTR gap 0.021 -0.096**

(0.075) (0.043)

Observations 14521 14521

Control mean 0.28 0.09

Prefecture-of-birth fixed effects Yes Yes

Year-of-birth fixed effects Yes Yes

Prefecture-specific linear trend Yes Yes

Post × Other trade policies Yes Yes

Post × Initial prefecture characteristics Yes Yes

Individual characteristics Yes Yes

Notes: Data are from the 2016–2018 CFPS. This table reports results of the DiD regressions of mental health

outcomes on the interaction of the prefecture-level NTR gap and a post-PNTR indicator. Regressions control

for prefecture of birth fixed effects, year of birth fix effects, prefecture-specific linear trend in year of birth,

and the post-PNTR indicator interacted with other trade policies including China’s output, input and external

tariffs, NTR rates, MFA quotas, and contract intensity, the post-PNTR indicator interacted with initial prefecture

characteristics including GDP per capita, average population age, average population years of schooling, total

number of children, and fertility rate, and individual characteristics including age, gender, father’s and mother’s

age, and indicator variables for whether the mother and father completed middle school. The knitwear industry

has the highest NTR gap value and is excluded in Panel A. The water resources management industry, coal

mining and washing industry, mineral mining and processing industry, and coking industry have the lowest

NTR gaps and are excluded in Panel B. Standard errors are clustered at the prefecture of birth level. ***, **, and

* denote significance at the 1, 5, and 10 percent levels.
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Table A3: Robustness Checks: Alternative Specifications

Any depression Severe depression

(1) (2)

Panel A. Regression weighted by the 1990 prefecture population

Post × NTR gap -0.020 -0.050**

(0.031) (0.020)

Observations 5978 5978

Control mean 0.17 0.07

Prefecture-of-birth fixed effects Yes Yes

Year-of-birth fixed effects Yes Yes

Prefecture-specific linear trend Yes Yes

Post × Other trade policies Yes Yes

Post × Initial prefecture characteristics Yes Yes

Individual characteristics Yes Yes

Panel B. Using year of birth fixed effects interacted with controls

Post × NTR gap -0.011 -0.056***

(0.033) (0.019)

Observations 14521 14521

Control mean 0.28 0.09

Prefecture-of-birth fixed effects Yes Yes

Year-of-birth fixed effects Yes Yes

Prefecture-specific linear trend Yes Yes

Year-of-birth fixed effects × Other trade policies Yes Yes

Year-of-birth fixed effects × Initial prefecture characteristics Yes Yes

Individual characteristics Yes Yes

Notes: Data are from the 2016–2018 CFPS. This table reports results of the DiD regressions of mental health outcomes on

the interaction of the prefecture-level NTR gap and a post-PNTR indicator. Regressions control for prefecture of birth fixed

effects, year of birth fix effects, prefecture-specific linear trend in year of birth, and the post-PNTR indicator interacted with

other trade policies including China’s output, input and external tariffs, NTR rates, MFA quotas, and contract intensity,

the post-PNTR indicator interacted with initial prefecture characteristics including GDP per capita, average population age,

average population years of schooling, total number of children, and fertility rate, and individual characteristics including

age, gender, father’s and mother’s age, and indicator variables for whether the mother and father completed middle school.

Regressions in Panel A are weighted by the 1990 prefecture population. Regressions in Panel B use year of birth fixed effects

interacted with other trade policies and initial prefecture characteristics. Standard errors are clustered at the prefecture of

birth level. ***, **, and * denote significance at the 1, 5, and 10 percent levels.
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Table A4: Heterogeneous Effects of PNTR on Adolescent Mental Health Outcomes

Any depression Severe depression

(1) (2)

Panel A. Interact with “Female”

Post × NTR gap 0.032 -0.019

(0.045) (0.028)

Post × NTR gap × Interaction -0.072 -0.053

(0.049) (0.040)

Observations 14521 14521

Control mean 0.28 0.09

Panel B. Interact with “Mother completed middle school”

Post × NTR gap 0.062 -0.040*

(0.055) (0.022)

Post × NTR gap × Interaction -0.070 -0.000

(0.067) (0.039)

Observations 14520 14520

Control mean 0.28 0.09

Panel C. Interact with “Parental absence for at least one week from ages 0-3”

Post × NTR gap 0.004 -0.031

(0.030) (0.021)

Post × NTR gap × Interaction -0.000 -0.098

(0.182) (0.103)

Observations 11245 11245

Control mean 0.27 0.09

Panel D: Interact with “Above the median initial share of the rural population”

Post × NTR gap 0.036 -0.042**

(0.042) (0.020)

Post × NTR gap × Interaction -0.028 0.065

(0.163) (0.110)

Observations 14521 14521

Control mean 0.28 0.09

Prefecture-of-birth fixed effects Yes Yes

Year-of-birth fixed effects Yes Yes

Prefecture-specific linear trend Yes Yes

Post × Other trade policies Yes Yes

Post × Initial prefecture characteristics Yes Yes

Individual characteristics Yes Yes

Notes: Data are from the 2016–2018 CFPS. This table reports results of the DiD regressions of mental health outcomes

on the interaction of the prefecture-level NTR gap and a post-PNTR indicator and a triple interaction of that term with a

female indicator in Panel A, with an indicator for whether the mother completed middle school in Panel B, an indicator

of parental absence for at least one week from ages 0-3 in Panel C, and an indicator of whether the initial share of the

rural population is above the median in Panel D. All regressions control for prefecture of birth fixed effects, year of birth

fixed effects, prefecture-specific linear trend in year of birth, and the post-PNTR indicator interacted with other trade

policies including China’s output, input and external tariffs, NTR rates, MFA quotas, and contract intensity, the post-

PNTR indicator interacted with initial prefecture characteristics including GDP per capita, average population age, average

population years of schooling, total number of children, and fertility rate, and individual characteristics including age,

gender, father’s and mother’s age, and indicator variables for whether the mother and father completed middle school.

The regressions also control for the triple interactions of those terms with a heterogeneous group indicator. Standard

errors are clustered at the prefecture of birth level. ***, **, and * denote significance at the 1, 5, and 10 percent levels.
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Table A5: Impact of PNTR on Individual Migration Experience

(1) (2) (3)

Panel A. Cross-prefecture migration since birth

Post × NTR gap 0.006 0.005 0.005

(0.011) (0.011) (0.011)

Observations 13100 13100 13100

Control mean 0.02 0.02 0.02

Panel B. Cross-prefecture migration since age 12

Post × NTR gap 0.008 0.004 0.003

(0.011) (0.011) (0.011)

Observations 9043 9043 9043

Control mean 0.02 0.02 0.02

Panel C. Rural-urban migration since age 12

Post × NTR gap 0.021 0.022 0.024

(0.025) (0.026) (0.026)

Observations 11697 11697 11697

Control mean 0.10 0.10 0.10

Prefecture-of-birth fixed effects Yes Yes Yes

Year-of-birth fixed effects Yes Yes Yes

Prefecture-specific linear trend Yes Yes Yes

Post × Other trade policies Yes Yes Yes

Post × Initial prefecture characteristics Yes Yes

Individual characteristics Yes

Notes: Data are from the 2016–2018 CFPS. This table reports results of the DiD regressions of migration

indicators on the interaction of the prefecture-level NTR gap and a post-PNTR indicator. Regressions in

column 1 control for prefecture of birth fixed effects, year of birth fix effects, prefecture-specific linear trend

in year of birth, and the post-PNTR indicator interacted with other trade policies including China’s output,

input and external tariffs, NTR rates, MFA quotas, and contract intensity. Regressions in column 2 further

control for the post-PNTR indicator interacted with initial prefecture characteristics including GDP per

capita, average population age, average population years of schooling, total number of children, and fertility

rate. Regressions in column 3 further control for individual characteristics including age, gender, father’s

and mother’s age, and indicator variables for whether the mother and father completed middle school.

Standard errors are clustered at the prefecture of birth level. ***, **, and * denote significance at the 1, 5, and

10 percent levels.
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Table A6: Impact of PNTR on Immigration and Emigration Rate

Total population Male Female

(1) (2) (3)

Panel A. Immigration rate in destination prefecture

Post × NTR gap 0.070 -0.001 0.004

(0.044) (0.007) (0.003)

Observations 1312 1312 1312

Control mean 0.05 0.02 0.01

Panel B. Emigration rate from origin prefecture

Post × NTR gap 0.023 0.014 0.009

(0.019) (0.011) (0.008)

Observations 1312 1312 1312

Control mean 0.04 0.02 0.02

Prefecture fixed effects Yes Yes Yes

Survey year fixed effects Yes Yes Yes

Prefecture-specific linear trend Yes Yes Yes

Post × Other trade policies Yes Yes Yes

Post × Initial prefecture characteristics Yes Yes Yes

Notes: Data are from the 2000 (the earliest census year where migration data are available), 2005,

2010, and 2015 population censuses in China. This table reports results of the DiD regressions

of migration outcomes (immigration and emigration rates) on the interaction of the prefecture-

level NTR gap and a post-PNTR indicator. Migration is defined as migrants aged 20-45 who

moved across prefectures to seek jobs. The immigration rate is measured as the ratio of migrants

who arrived in a given destination prefecture to the total number of non-migrant residents in

that prefecture. The emigration rate is measured as the share of migrants who left a given

prefecture to the total number of residents in that prefecture. All regressions control for prefecture

fixed effects, survey year fixed effects, prefecture-specific linear trend, the post-PNTR indicator

interacted with other trade policies including China’s output, input and external tariffs, NTR

rates, MFA quotas, and contract intensity, and the post-PNTR indicator interacted with initial

prefecture characteristics including GDP per capita, average population age, average population

years of schooling, total number of children, and fertility rate. Standard errors are clustered at the

prefecture level. ***, **, and * denote significance at the 1, 5, and 10 percent levels.
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Table A7: Impact of PNTR on Parental Absence

(1) (2) (3)

Panel A. Parents were absent for at least one week from ages 0-3

Post × NTR gap -0.024 -0.007 -0.006

(0.029) (0.033) (0.032)

Observations 11253 11253 11253

Control mean 0.10 0.10 0.10

Prefecture-of-birth fixed effects Yes Yes Yes

Year-of-birth fixed effects Yes Yes Yes

Prefecture-specific linear trend Yes Yes Yes

Post × Other trade policies Yes Yes Yes

Post × Initial prefecture characteristics Yes Yes

Individual characteristics Yes

Panel B. A parent was not living in the household and seeking employment elsewhere

Panel B1. Mother
Post × NTR gap 0.044 0.021 0.021

(0.040) (0.044) (0.045)

Observations 3446 3446 3446

Control mean 0.01 0.01 0.01

Panel B2. Father
Post × NTR gap 0.000 0.029 0.024

(0.063) (0.079) (0.079)

Observations 3446 3446 3446

Control mean 0.03 0.03 0.03

Prefecture fixed effects Yes Yes Yes

Survey year fixed effects Yes Yes Yes

Prefecture-specific linear trend Yes Yes Yes

Post × Other trade policies Yes Yes Yes

Post × Initial prefecture characteristics Yes Yes

Individual characteristics Yes

Notes: Data in Panel A are from the 2016–2018 CFPS and data in Panel B are from the 1993-2015 CHNS.

Regression in column 1 controls for prefecture of birth fixed effects (prefecture fixed effects in Panel B), year

of birth fixed effects (survey year fixed effects in Panel B), prefecture-specific linear time trend, and the post-

PNTR indicator interacted with other trade policies including China’s output, input and external tariffs,

NTR rates, MFA quotas, and contract intensity. Regression in column 2 further controls for the post-PNTR

indicator interacted with initial prefecture characteristics including GDP per capita, average population age,

average population years of schooling, total number of children, and fertility rate. Regression in column 3

further controls for individual characteristics including age, gender, father’s and mother’s age, and indicator

variables for whether the mother and father completed middle school. Standard errors are clustered at the

prefecture of birth level in Panel A and are clustered at the prefecture level in Panel B. ***, **, and * denote

significance at the 1, 5, and 10 percent levels.
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Table A8: Impact of PNTR on Fertility Outcomes

Births per Number of Percent of women

1,000 women children with children

(1) (2) (3)

Post × NTR gap 2.761 -613.377 -0.011

(2.054) (381.649) (0.010)

Observations 1640 1640 1640

Control mean 46.71 6799.82 0.82

Prefecture fixed effects Yes Yes Yes

Survey year fixed effects Yes Yes Yes

Prefecture-specific linear trend Yes Yes Yes

Post × Other trade policies Yes Yes Yes

Post × Initial prefecture characteristics Yes Yes Yes

Notes: Data are from the 1990, 2000, 2005, 2010, and 2015 population censuses in China. This table reports results of the

DiD regressions of fertility outcomes on the interaction of the prefecture-level NTR gap and a post-PNTR indicator. All

regressions control for prefecture fixed effects, year fixed effects, and the post-PNTR indicator interacted with other trade

policies including China’s output, input and external tariffs, NTR rates, MFA quotas, and contract intensity. The regressions

also control for the post-PNTR indicator interacted with initial prefecture characteristics including GDP per capita, average

population age, average population years of schooling, total number of children, and fertility rate. Standard errors are

clustered at the prefecture level. ***, **, and * denote significance at the 1, 5, and 10 percent levels.
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